mirror of https://github.com/coqui-ai/TTS.git
382 lines
14 KiB
Python
382 lines
14 KiB
Python
import torch
|
|
from torch import nn
|
|
from torch.autograd import Variable
|
|
from torch.nn import functional as F
|
|
|
|
|
|
class Linear(nn.Module):
|
|
def __init__(self,
|
|
in_features,
|
|
out_features,
|
|
bias=True,
|
|
init_gain='linear'):
|
|
super(Linear, self).__init__()
|
|
self.linear_layer = torch.nn.Linear(
|
|
in_features, out_features, bias=bias)
|
|
self._init_w(init_gain)
|
|
|
|
def _init_w(self, init_gain):
|
|
torch.nn.init.xavier_uniform_(
|
|
self.linear_layer.weight,
|
|
gain=torch.nn.init.calculate_gain(init_gain))
|
|
|
|
def forward(self, x):
|
|
return self.linear_layer(x)
|
|
|
|
|
|
class LinearBN(nn.Module):
|
|
def __init__(self,
|
|
in_features,
|
|
out_features,
|
|
bias=True,
|
|
init_gain='linear'):
|
|
super(LinearBN, self).__init__()
|
|
self.linear_layer = torch.nn.Linear(
|
|
in_features, out_features, bias=bias)
|
|
self.bn = nn.BatchNorm1d(out_features)
|
|
self._init_w(init_gain)
|
|
|
|
def _init_w(self, init_gain):
|
|
torch.nn.init.xavier_uniform_(
|
|
self.linear_layer.weight,
|
|
gain=torch.nn.init.calculate_gain(init_gain))
|
|
|
|
def forward(self, x):
|
|
out = self.linear_layer(x)
|
|
if len(out.shape) == 3:
|
|
out = out.permute(1, 2, 0)
|
|
out = self.bn(out)
|
|
if len(out.shape) == 3:
|
|
out = out.permute(2, 0, 1)
|
|
return out
|
|
|
|
|
|
class Prenet(nn.Module):
|
|
def __init__(self,
|
|
in_features,
|
|
prenet_type="original",
|
|
prenet_dropout=True,
|
|
out_features=[256, 256],
|
|
bias=True):
|
|
super(Prenet, self).__init__()
|
|
self.prenet_type = prenet_type
|
|
self.prenet_dropout = prenet_dropout
|
|
in_features = [in_features] + out_features[:-1]
|
|
if prenet_type == "bn":
|
|
self.layers = nn.ModuleList([
|
|
LinearBN(in_size, out_size, bias=bias)
|
|
for (in_size, out_size) in zip(in_features, out_features)
|
|
])
|
|
elif prenet_type == "original":
|
|
self.layers = nn.ModuleList([
|
|
Linear(in_size, out_size, bias=bias)
|
|
for (in_size, out_size) in zip(in_features, out_features)
|
|
])
|
|
|
|
def forward(self, x):
|
|
for linear in self.layers:
|
|
if self.prenet_dropout:
|
|
x = F.dropout(F.relu(linear(x)), p=0.5, training=self.training)
|
|
else:
|
|
x = F.relu(linear(x))
|
|
return x
|
|
|
|
|
|
class LocationLayer(nn.Module):
|
|
def __init__(self,
|
|
attention_dim,
|
|
attention_n_filters=32,
|
|
attention_kernel_size=31):
|
|
super(LocationLayer, self).__init__()
|
|
self.location_conv = nn.Conv1d(
|
|
in_channels=2,
|
|
out_channels=attention_n_filters,
|
|
kernel_size=attention_kernel_size,
|
|
stride=1,
|
|
padding=(attention_kernel_size - 1) // 2,
|
|
bias=False)
|
|
self.location_dense = Linear(
|
|
attention_n_filters, attention_dim, bias=False, init_gain='tanh')
|
|
|
|
def forward(self, attention_cat):
|
|
processed_attention = self.location_conv(attention_cat)
|
|
processed_attention = self.location_dense(
|
|
processed_attention.transpose(1, 2))
|
|
return processed_attention
|
|
|
|
|
|
class GravesAttention(nn.Module):
|
|
""" Graves attention as described here:
|
|
- https://arxiv.org/abs/1910.10288
|
|
"""
|
|
COEF = 0.3989422917366028 # numpy.sqrt(1/(2*numpy.pi))
|
|
|
|
def __init__(self, query_dim, K):
|
|
super(GravesAttention, self).__init__()
|
|
self._mask_value = 0.0
|
|
self.K = K
|
|
# self.attention_alignment = 0.05
|
|
self.eps = 1e-5
|
|
self.J = None
|
|
self.N_a = nn.Sequential(
|
|
nn.Linear(query_dim, query_dim, bias=True),
|
|
nn.ReLU(),
|
|
nn.Linear(query_dim, 3*K, bias=True))
|
|
self.attention_weights = None
|
|
self.mu_prev = None
|
|
self.init_layers()
|
|
|
|
def init_layers(self):
|
|
torch.nn.init.constant_(self.N_a[2].bias[10:15], 0.5)
|
|
torch.nn.init.constant_(self.N_a[2].bias[5:10], 10)
|
|
|
|
def init_states(self, inputs):
|
|
if self.J is None or inputs.shape[1] > self.J.shape[-1]:
|
|
self.J = torch.arange(0, inputs.shape[1]).to(inputs.device).expand([inputs.shape[0], self.K, inputs.shape[1]])
|
|
self.attention_weights = torch.zeros(inputs.shape[0], inputs.shape[1]).to(inputs.device)
|
|
self.mu_prev = torch.zeros(inputs.shape[0], self.K).to(inputs.device)
|
|
|
|
# pylint: disable=R0201
|
|
# pylint: disable=unused-argument
|
|
def preprocess_inputs(self, inputs):
|
|
return None
|
|
|
|
def forward(self, query, inputs, processed_inputs, mask):
|
|
"""
|
|
shapes:
|
|
query: B x D_attention_rnn
|
|
inputs: B x T_in x D_encoder
|
|
processed_inputs: place_holder
|
|
mask: B x T_in
|
|
"""
|
|
gbk_t = self.N_a(query)
|
|
gbk_t = gbk_t.view(gbk_t.size(0), -1, self.K)
|
|
|
|
# attention model parameters
|
|
# each B x K
|
|
g_t = gbk_t[:, 0, :]
|
|
b_t = gbk_t[:, 1, :]
|
|
k_t = gbk_t[:, 2, :]
|
|
|
|
# attention GMM parameters
|
|
inv_sig_t = torch.exp(-torch.clamp(b_t, min=-6, max=9)) # variance
|
|
mu_t = self.mu_prev + torch.nn.functional.softplus(k_t)
|
|
g_t = torch.softmax(g_t, dim=-1) * inv_sig_t + self.eps
|
|
|
|
# each B x K x T_in
|
|
g_t = g_t.unsqueeze(2).expand(g_t.size(0),
|
|
g_t.size(1),
|
|
inputs.size(1))
|
|
inv_sig_t = inv_sig_t.unsqueeze(2).expand_as(g_t)
|
|
mu_t_ = mu_t.unsqueeze(2).expand_as(g_t)
|
|
j = self.J[:g_t.size(0), :, :inputs.size(1)]
|
|
|
|
# attention weights
|
|
phi_t = g_t * torch.exp(-0.5 * inv_sig_t * (mu_t_ - j)**2)
|
|
alpha_t = self.COEF * torch.sum(phi_t, 1)
|
|
|
|
# apply masking
|
|
if mask is not None:
|
|
alpha_t.data.masked_fill_(~mask, self._mask_value)
|
|
|
|
context = torch.bmm(alpha_t.unsqueeze(1), inputs).squeeze(1)
|
|
self.attention_weights = alpha_t
|
|
self.mu_prev = mu_t
|
|
return context
|
|
|
|
|
|
class OriginalAttention(nn.Module):
|
|
"""Following the methods proposed here:
|
|
- https://arxiv.org/abs/1712.05884
|
|
- https://arxiv.org/abs/1807.06736 + state masking at inference
|
|
- Using sigmoid instead of softmax normalization
|
|
- Attention windowing at inference time
|
|
"""
|
|
# Pylint gets confused by PyTorch conventions here
|
|
#pylint: disable=attribute-defined-outside-init
|
|
def __init__(self, query_dim, embedding_dim, attention_dim,
|
|
location_attention, attention_location_n_filters,
|
|
attention_location_kernel_size, windowing, norm, forward_attn,
|
|
trans_agent, forward_attn_mask):
|
|
super(OriginalAttention, self).__init__()
|
|
self.query_layer = Linear(
|
|
query_dim, attention_dim, bias=False, init_gain='tanh')
|
|
self.inputs_layer = Linear(
|
|
embedding_dim, attention_dim, bias=False, init_gain='tanh')
|
|
self.v = Linear(attention_dim, 1, bias=True)
|
|
if trans_agent:
|
|
self.ta = nn.Linear(
|
|
query_dim + embedding_dim, 1, bias=True)
|
|
if location_attention:
|
|
self.location_layer = LocationLayer(
|
|
attention_dim,
|
|
attention_location_n_filters,
|
|
attention_location_kernel_size,
|
|
)
|
|
self._mask_value = -float("inf")
|
|
self.windowing = windowing
|
|
self.win_idx = None
|
|
self.norm = norm
|
|
self.forward_attn = forward_attn
|
|
self.trans_agent = trans_agent
|
|
self.forward_attn_mask = forward_attn_mask
|
|
self.location_attention = location_attention
|
|
|
|
def init_win_idx(self):
|
|
self.win_idx = -1
|
|
self.win_back = 2
|
|
self.win_front = 6
|
|
|
|
def init_forward_attn(self, inputs):
|
|
B = inputs.shape[0]
|
|
T = inputs.shape[1]
|
|
self.alpha = torch.cat(
|
|
[torch.ones([B, 1]),
|
|
torch.zeros([B, T])[:, :-1] + 1e-7], dim=1).to(inputs.device)
|
|
self.u = (0.5 * torch.ones([B, 1])).to(inputs.device)
|
|
|
|
def init_location_attention(self, inputs):
|
|
B = inputs.shape[0]
|
|
T = inputs.shape[1]
|
|
self.attention_weights_cum = Variable(inputs.data.new(B, T).zero_())
|
|
|
|
def init_states(self, inputs):
|
|
B = inputs.shape[0]
|
|
T = inputs.shape[1]
|
|
self.attention_weights = Variable(inputs.data.new(B, T).zero_())
|
|
if self.location_attention:
|
|
self.init_location_attention(inputs)
|
|
if self.forward_attn:
|
|
self.init_forward_attn(inputs)
|
|
if self.windowing:
|
|
self.init_win_idx()
|
|
|
|
def preprocess_inputs(self, inputs):
|
|
return self.inputs_layer(inputs)
|
|
|
|
def update_location_attention(self, alignments):
|
|
self.attention_weights_cum += alignments
|
|
|
|
def get_location_attention(self, query, processed_inputs):
|
|
attention_cat = torch.cat((self.attention_weights.unsqueeze(1),
|
|
self.attention_weights_cum.unsqueeze(1)),
|
|
dim=1)
|
|
processed_query = self.query_layer(query.unsqueeze(1))
|
|
processed_attention_weights = self.location_layer(attention_cat)
|
|
energies = self.v(
|
|
torch.tanh(processed_query + processed_attention_weights +
|
|
processed_inputs))
|
|
energies = energies.squeeze(-1)
|
|
return energies, processed_query
|
|
|
|
def get_attention(self, query, processed_inputs):
|
|
processed_query = self.query_layer(query.unsqueeze(1))
|
|
energies = self.v(torch.tanh(processed_query + processed_inputs))
|
|
energies = energies.squeeze(-1)
|
|
return energies, processed_query
|
|
|
|
def apply_windowing(self, attention, inputs):
|
|
back_win = self.win_idx - self.win_back
|
|
front_win = self.win_idx + self.win_front
|
|
if back_win > 0:
|
|
attention[:, :back_win] = -float("inf")
|
|
if front_win < inputs.shape[1]:
|
|
attention[:, front_win:] = -float("inf")
|
|
# this is a trick to solve a special problem.
|
|
# but it does not hurt.
|
|
if self.win_idx == -1:
|
|
attention[:, 0] = attention.max()
|
|
# Update the window
|
|
self.win_idx = torch.argmax(attention, 1).long()[0].item()
|
|
return attention
|
|
|
|
def apply_forward_attention(self, alignment):
|
|
# forward attention
|
|
fwd_shifted_alpha = F.pad(self.alpha[:, :-1].clone().to(alignment.device),
|
|
(1, 0, 0, 0))
|
|
# compute transition potentials
|
|
alpha = ((1 - self.u) * self.alpha
|
|
+ self.u * fwd_shifted_alpha
|
|
+ 1e-8) * alignment
|
|
# force incremental alignment
|
|
if not self.training and self.forward_attn_mask:
|
|
_, n = fwd_shifted_alpha.max(1)
|
|
val, n2 = alpha.max(1)
|
|
for b in range(alignment.shape[0]):
|
|
alpha[b, n[b] + 3:] = 0
|
|
alpha[b, :(
|
|
n[b] - 1
|
|
)] = 0 # ignore all previous states to prevent repetition.
|
|
alpha[b,
|
|
(n[b] - 2
|
|
)] = 0.01 * val[b] # smoothing factor for the prev step
|
|
# renormalize attention weights
|
|
alpha = alpha / alpha.sum(dim=1, keepdim=True)
|
|
return alpha
|
|
|
|
def forward(self, query, inputs, processed_inputs, mask):
|
|
"""
|
|
shapes:
|
|
query: B x D_attn_rnn
|
|
inputs: B x T_en x D_en
|
|
processed_inputs:: B x T_en x D_attn
|
|
mask: B x T_en
|
|
"""
|
|
if self.location_attention:
|
|
attention, _ = self.get_location_attention(
|
|
query, processed_inputs)
|
|
else:
|
|
attention, _ = self.get_attention(
|
|
query, processed_inputs)
|
|
# apply masking
|
|
if mask is not None:
|
|
attention.data.masked_fill_(~mask, self._mask_value)
|
|
# apply windowing - only in eval mode
|
|
if not self.training and self.windowing:
|
|
attention = self.apply_windowing(attention, inputs)
|
|
|
|
# normalize attention values
|
|
if self.norm == "softmax":
|
|
alignment = torch.softmax(attention, dim=-1)
|
|
elif self.norm == "sigmoid":
|
|
alignment = torch.sigmoid(attention) / torch.sigmoid(
|
|
attention).sum(
|
|
dim=1, keepdim=True)
|
|
else:
|
|
raise ValueError("Unknown value for attention norm type")
|
|
|
|
if self.location_attention:
|
|
self.update_location_attention(alignment)
|
|
|
|
# apply forward attention if enabled
|
|
if self.forward_attn:
|
|
alignment = self.apply_forward_attention(alignment)
|
|
self.alpha = alignment
|
|
|
|
context = torch.bmm(alignment.unsqueeze(1), inputs)
|
|
context = context.squeeze(1)
|
|
self.attention_weights = alignment
|
|
|
|
# compute transition agent
|
|
if self.forward_attn and self.trans_agent:
|
|
ta_input = torch.cat([context, query.squeeze(1)], dim=-1)
|
|
self.u = torch.sigmoid(self.ta(ta_input))
|
|
return context
|
|
|
|
|
|
def init_attn(attn_type, query_dim, embedding_dim, attention_dim,
|
|
location_attention, attention_location_n_filters,
|
|
attention_location_kernel_size, windowing, norm, forward_attn,
|
|
trans_agent, forward_attn_mask, attn_K):
|
|
if attn_type == "original":
|
|
return OriginalAttention(query_dim, embedding_dim, attention_dim,
|
|
location_attention,
|
|
attention_location_n_filters,
|
|
attention_location_kernel_size, windowing,
|
|
norm, forward_attn, trans_agent,
|
|
forward_attn_mask)
|
|
if attn_type == "graves":
|
|
return GravesAttention(query_dim, attn_K)
|
|
raise RuntimeError(
|
|
" [!] Given Attention Type '{attn_type}' is not exist.")
|