mirror of https://github.com/coqui-ai/TTS.git
355 lines
11 KiB
Plaintext
355 lines
11 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"This is a notebook to generate mel-spectrograms from a TTS model to be used for WaveRNN training."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"%load_ext autoreload\n",
|
|
"%autoreload 2\n",
|
|
"import os\n",
|
|
"import sys\n",
|
|
"import torch\n",
|
|
"import importlib\n",
|
|
"import numpy as np\n",
|
|
"from tqdm import tqdm as tqdm\n",
|
|
"from torch.utils.data import DataLoader\n",
|
|
"from TTS.tts.datasets.TTSDataset import MyDataset\n",
|
|
"from TTS.tts.layers.losses import L1LossMasked\n",
|
|
"from TTS.tts.utils.audio import AudioProcessor\n",
|
|
"from TTS.tts.utils.visual import plot_spectrogram\n",
|
|
"from TTS.tts.utils.generic_utils import load_config, setup_model, sequence_mask\n",
|
|
"from TTS.tts.utils.text.symbols import make_symbols, symbols, phonemes\n",
|
|
"\n",
|
|
"%matplotlib inline\n",
|
|
"\n",
|
|
"import os\n",
|
|
"os.environ['CUDA_VISIBLE_DEVICES']='0'"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"def set_filename(wav_path, out_path):\n",
|
|
" wav_file = os.path.basename(wav_path)\n",
|
|
" file_name = wav_file.split('.')[0]\n",
|
|
" os.makedirs(os.path.join(out_path, \"quant\"), exist_ok=True)\n",
|
|
" os.makedirs(os.path.join(out_path, \"mel\"), exist_ok=True)\n",
|
|
" os.makedirs(os.path.join(out_path, \"wav_gl\"), exist_ok=True)\n",
|
|
" wavq_path = os.path.join(out_path, \"quant\", file_name)\n",
|
|
" mel_path = os.path.join(out_path, \"mel\", file_name)\n",
|
|
" wav_path = os.path.join(out_path, \"wav_gl\", file_name)\n",
|
|
" return file_name, wavq_path, mel_path, wav_path"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"OUT_PATH = \"/home/erogol/Data/LJSpeech-1.1/ljspeech-March-17-2020_01+16AM-871588c/\"\n",
|
|
"DATA_PATH = \"/home/erogol/Data/LJSpeech-1.1/\"\n",
|
|
"DATASET = \"ljspeech\"\n",
|
|
"METADATA_FILE = \"metadata.csv\"\n",
|
|
"CONFIG_PATH = \"/home/erogol/Models/LJSpeech/ljspeech-March-17-2020_01+16AM-871588c/config.json\"\n",
|
|
"MODEL_FILE = \"/home/erogol/Models/LJSpeech/ljspeech-March-17-2020_01+16AM-871588c/checkpoint_420000.pth.tar\"\n",
|
|
"BATCH_SIZE = 32\n",
|
|
"\n",
|
|
"QUANTIZED_WAV = False\n",
|
|
"QUANTIZE_BIT = 9\n",
|
|
"DRY_RUN = False # if False, does not generate output files, only computes loss and visuals.\n",
|
|
"\n",
|
|
"use_cuda = torch.cuda.is_available()\n",
|
|
"print(\" > CUDA enabled: \", use_cuda)\n",
|
|
"\n",
|
|
"C = load_config(CONFIG_PATH)\n",
|
|
"C.audio['do_trim_silence'] = False # IMPORTANT!!!!!!!!!!!!!!! disable to align mel specs with the wav files\n",
|
|
"ap = AudioProcessor(bits=QUANTIZE_BIT, **C.audio)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# if the vocabulary was passed, replace the default\n",
|
|
"if 'characters' in C.keys():\n",
|
|
" symbols, phonemes = make_symbols(**C.characters)\n",
|
|
"\n",
|
|
"# load the model\n",
|
|
"num_chars = len(phonemes) if C.use_phonemes else len(symbols)\n",
|
|
"# TODO: multiple speaker\n",
|
|
"model = setup_model(num_chars, num_speakers=0, c=C)\n",
|
|
"checkpoint = torch.load(MODEL_FILE)\n",
|
|
"model.load_state_dict(checkpoint['model'])\n",
|
|
"print(checkpoint['step'])\n",
|
|
"model.eval()\n",
|
|
"model.decoder.set_r(checkpoint['r'])\n",
|
|
"if use_cuda:\n",
|
|
" model = model.cuda()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"preprocessor = importlib.import_module('TTS.tts.datasets.preprocess')\n",
|
|
"preprocessor = getattr(preprocessor, DATASET.lower())\n",
|
|
"meta_data = preprocessor(DATA_PATH,METADATA_FILE)\n",
|
|
"dataset = MyDataset(checkpoint['r'], C.text_cleaner, False, ap, meta_data,tp=C.characters if 'characters' in C.keys() else None, use_phonemes=C.use_phonemes, phoneme_cache_path=C.phoneme_cache_path, enable_eos_bos=C.enable_eos_bos_chars)\n",
|
|
"loader = DataLoader(dataset, batch_size=BATCH_SIZE, num_workers=4, collate_fn=dataset.collate_fn, shuffle=False, drop_last=False)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Generate model outputs "
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import pickle\n",
|
|
"\n",
|
|
"file_idxs = []\n",
|
|
"metadata = []\n",
|
|
"losses = []\n",
|
|
"postnet_losses = []\n",
|
|
"criterion = L1LossMasked(seq_len_norm=C.seq_len_norm)\n",
|
|
"with torch.no_grad():\n",
|
|
" for data in tqdm(loader):\n",
|
|
" # setup input data\n",
|
|
" text_input = data[0]\n",
|
|
" text_lengths = data[1]\n",
|
|
" linear_input = data[3]\n",
|
|
" mel_input = data[4]\n",
|
|
" mel_lengths = data[5]\n",
|
|
" stop_targets = data[6]\n",
|
|
" item_idx = data[7]\n",
|
|
"\n",
|
|
" # dispatch data to GPU\n",
|
|
" if use_cuda:\n",
|
|
" text_input = text_input.cuda()\n",
|
|
" text_lengths = text_lengths.cuda()\n",
|
|
" mel_input = mel_input.cuda()\n",
|
|
" mel_lengths = mel_lengths.cuda()\n",
|
|
"\n",
|
|
" mask = sequence_mask(text_lengths)\n",
|
|
" mel_outputs, postnet_outputs, alignments, stop_tokens = model.forward(text_input, text_lengths, mel_input)\n",
|
|
" \n",
|
|
" # compute loss\n",
|
|
" loss = criterion(mel_outputs, mel_input, mel_lengths)\n",
|
|
" loss_postnet = criterion(postnet_outputs, mel_input, mel_lengths)\n",
|
|
" losses.append(loss.item())\n",
|
|
" postnet_losses.append(loss_postnet.item())\n",
|
|
"\n",
|
|
" # compute mel specs from linear spec if model is Tacotron\n",
|
|
" if C.model == \"Tacotron\":\n",
|
|
" mel_specs = []\n",
|
|
" postnet_outputs = postnet_outputs.data.cpu().numpy()\n",
|
|
" for b in range(postnet_outputs.shape[0]):\n",
|
|
" postnet_output = postnet_outputs[b]\n",
|
|
" mel_specs.append(torch.FloatTensor(ap.out_linear_to_mel(postnet_output.T).T).cuda())\n",
|
|
" postnet_outputs = torch.stack(mel_specs)\n",
|
|
" elif C.model == \"Tacotron2\":\n",
|
|
" postnet_outputs = postnet_outputs.detach().cpu().numpy()\n",
|
|
" alignments = alignments.detach().cpu().numpy()\n",
|
|
"\n",
|
|
" if not DRY_RUN:\n",
|
|
" for idx in range(text_input.shape[0]):\n",
|
|
" wav_file_path = item_idx[idx]\n",
|
|
" wav = ap.load_wav(wav_file_path)\n",
|
|
" file_name, wavq_path, mel_path, wav_path = set_filename(wav_file_path, OUT_PATH)\n",
|
|
" file_idxs.append(file_name)\n",
|
|
"\n",
|
|
" # quantize and save wav\n",
|
|
" if QUANTIZED_WAV:\n",
|
|
" wavq = ap.quantize(wav)\n",
|
|
" np.save(wavq_path, wavq)\n",
|
|
"\n",
|
|
" # save TTS mel\n",
|
|
" mel = postnet_outputs[idx]\n",
|
|
" mel_length = mel_lengths[idx]\n",
|
|
" mel = mel[:mel_length, :].T\n",
|
|
" np.save(mel_path, mel)\n",
|
|
"\n",
|
|
" metadata.append([wav_file_path, mel_path])\n",
|
|
"\n",
|
|
" # for wavernn\n",
|
|
" if not DRY_RUN:\n",
|
|
" pickle.dump(file_idxs, open(OUT_PATH+\"/dataset_ids.pkl\", \"wb\")) \n",
|
|
" \n",
|
|
" # for pwgan\n",
|
|
" with open(os.path.join(OUT_PATH, \"metadata.txt\"), \"w\") as f:\n",
|
|
" for data in metadata:\n",
|
|
" f.write(f\"{data[0]}|{data[1]+'.npy'}\\n\")\n",
|
|
"\n",
|
|
" print(np.mean(losses))\n",
|
|
" print(np.mean(postnet_losses))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# for pwgan\n",
|
|
"with open(os.path.join(OUT_PATH, \"metadata.txt\"), \"w\") as f:\n",
|
|
" for data in metadata:\n",
|
|
" f.write(f\"{data[0]}|{data[1]+'.npy'}\\n\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Sanity Check"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"idx = 1\n",
|
|
"ap.melspectrogram(ap.load_wav(item_idx[idx])).shape"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import soundfile as sf\n",
|
|
"wav, sr = sf.read(item_idx[idx])\n",
|
|
"mel_postnet = postnet_outputs[idx][:mel_lengths[idx], :]\n",
|
|
"mel_decoder = mel_outputs[idx][:mel_lengths[idx], :].detach().cpu().numpy()\n",
|
|
"mel_truth = ap.melspectrogram(wav)\n",
|
|
"print(mel_truth.shape)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# plot posnet output\n",
|
|
"plot_spectrogram(mel_postnet, ap);\n",
|
|
"print(mel_postnet[:mel_lengths[idx], :].shape)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# plot decoder output\n",
|
|
"plot_spectrogram(mel_decoder, ap);\n",
|
|
"print(mel_decoder.shape)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# plot GT specgrogram\n",
|
|
"print(mel_truth.shape)\n",
|
|
"plot_spectrogram(mel_truth.T, ap);"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# postnet, decoder diff\n",
|
|
"from matplotlib import pylab as plt\n",
|
|
"mel_diff = mel_decoder - mel_postnet\n",
|
|
"plt.figure(figsize=(16, 10))\n",
|
|
"plt.imshow(abs(mel_diff[:mel_lengths[idx],:]).T,aspect=\"auto\", origin=\"lower\");\n",
|
|
"plt.colorbar()\n",
|
|
"plt.tight_layout()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# PLOT GT SPECTROGRAM diff\n",
|
|
"from matplotlib import pylab as plt\n",
|
|
"mel_diff2 = mel_truth.T - mel_decoder\n",
|
|
"plt.figure(figsize=(16, 10))\n",
|
|
"plt.imshow(abs(mel_diff2).T,aspect=\"auto\", origin=\"lower\");\n",
|
|
"plt.colorbar()\n",
|
|
"plt.tight_layout()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# PLOT GT SPECTROGRAM diff\n",
|
|
"from matplotlib import pylab as plt\n",
|
|
"mel = postnet_outputs[idx]\n",
|
|
"mel_diff2 = mel_truth.T - mel[:mel_truth.shape[1]]\n",
|
|
"plt.figure(figsize=(16, 10))\n",
|
|
"plt.imshow(abs(mel_diff2).T,aspect=\"auto\", origin=\"lower\");\n",
|
|
"plt.colorbar()\n",
|
|
"plt.tight_layout()"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.7.4"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 4
|
|
}
|