mirror of https://github.com/coqui-ai/TTS.git
89 lines
2.6 KiB
Python
89 lines
2.6 KiB
Python
import argparse
|
|
import glob
|
|
import os
|
|
|
|
import numpy as np
|
|
from tqdm import tqdm
|
|
|
|
import torch
|
|
from TTS.speaker_encoder.model import SpeakerEncoder
|
|
from TTS.utils.audio import AudioProcessor
|
|
from TTS.utils.generic_utils import load_config
|
|
|
|
parser = argparse.ArgumentParser(
|
|
description='Compute embedding vectors for each wav file in a dataset. ')
|
|
parser.add_argument(
|
|
'model_path',
|
|
type=str,
|
|
help='Path to model outputs (checkpoint, tensorboard etc.).')
|
|
parser.add_argument(
|
|
'config_path',
|
|
type=str,
|
|
help='Path to config file for training.',
|
|
)
|
|
parser.add_argument(
|
|
'data_path',
|
|
type=str,
|
|
help='Data path for wav files - directory or CSV file')
|
|
parser.add_argument(
|
|
'output_path',
|
|
type=str,
|
|
help='path for training outputs.')
|
|
parser.add_argument(
|
|
'--use_cuda', type=bool, help='flag to set cuda.', default=False
|
|
)
|
|
parser.add_argument(
|
|
'--separator', type=str, help='Separator used in file if CSV is passed for data_path', default='|'
|
|
)
|
|
args = parser.parse_args()
|
|
|
|
|
|
c = load_config(args.config_path)
|
|
ap = AudioProcessor(**c['audio'])
|
|
|
|
data_path = args.data_path
|
|
split_ext = os.path.splitext(data_path)
|
|
sep = args.separator
|
|
|
|
if len(split_ext) > 0 and split_ext[1].lower() == '.csv':
|
|
# Parse CSV
|
|
print(f'CSV file: {data_path}')
|
|
with open(data_path) as f:
|
|
wav_path = os.path.join(os.path.dirname(data_path), 'wavs')
|
|
wav_files = []
|
|
print(f'Separator is: {sep}')
|
|
for line in f:
|
|
components = line.split(sep)
|
|
if len(components) != 2:
|
|
print("Invalid line")
|
|
continue
|
|
wav_file = os.path.join(wav_path, components[0] + '.wav')
|
|
#print(f'wav_file: {wav_file}')
|
|
if os.path.exists(wav_file):
|
|
wav_files.append(wav_file)
|
|
print(f'Count of wavs imported: {len(wav_files)}')
|
|
else:
|
|
# Parse all wav files in data_path
|
|
wav_path = data_path
|
|
wav_files = glob.glob(data_path + '/**/*.wav', recursive=True)
|
|
|
|
output_files = [wav_file.replace(wav_path, args.output_path).replace(
|
|
'.wav', '.npy') for wav_file in wav_files]
|
|
|
|
for output_file in output_files:
|
|
os.makedirs(os.path.dirname(output_file), exist_ok=True)
|
|
|
|
model = SpeakerEncoder(**c.model)
|
|
model.load_state_dict(torch.load(args.model_path)['model'])
|
|
model.eval()
|
|
if args.use_cuda:
|
|
model.cuda()
|
|
|
|
for idx, wav_file in enumerate(tqdm(wav_files)):
|
|
mel_spec = ap.melspectrogram(ap.load_wav(wav_file)).T
|
|
mel_spec = torch.FloatTensor(mel_spec[None, :, :])
|
|
if args.use_cuda:
|
|
mel_spec = mel_spec.cuda()
|
|
embedd = model.compute_embedding(mel_spec)
|
|
np.save(output_files[idx], embedd.detach().cpu().numpy())
|