TTS/server/synthesizer.py

191 lines
8.0 KiB
Python

import io
import re
import sys
import numpy as np
import torch
import yaml
from TTS.utils.audio import AudioProcessor
from TTS.utils.generic_utils import load_config, setup_model
from TTS.utils.speakers import load_speaker_mapping
from TTS.utils.synthesis import *
from TTS.utils.text import phonemes, symbols
alphabets = r"([A-Za-z])"
prefixes = r"(Mr|St|Mrs|Ms|Dr)[.]"
suffixes = r"(Inc|Ltd|Jr|Sr|Co)"
starters = r"(Mr|Mrs|Ms|Dr|He\s|She\s|It\s|They\s|Their\s|Our\s|We\s|But\s|However\s|That\s|This\s|Wherever)"
acronyms = r"([A-Z][.][A-Z][.](?:[A-Z][.])?)"
websites = r"[.](com|net|org|io|gov)"
class Synthesizer(object):
def __init__(self, config):
self.wavernn = None
self.pwgan = None
self.config = config
self.use_cuda = self.config.use_cuda
if self.use_cuda:
assert torch.cuda.is_available(), "CUDA is not availabe on this machine."
self.load_tts(self.config.tts_checkpoint, self.config.tts_config,
self.config.use_cuda)
if self.config.wavernn_lib_path:
self.load_wavernn(self.config.wavernn_lib_path, self.config.wavernn_file,
self.config.wavernn_config, self.config.use_cuda)
if self.config.pwgan_lib_path:
self.load_pwgan(self.config.pwgan_lib_path, self.config.pwgan_file,
self.config.pwgan_config, self.config.use_cuda)
def load_tts(self, tts_checkpoint, tts_config, use_cuda):
print(" > Loading TTS model ...")
print(" | > model config: ", tts_config)
print(" | > checkpoint file: ", tts_checkpoint)
self.tts_config = load_config(tts_config)
self.use_phonemes = self.tts_config.use_phonemes
self.ap = AudioProcessor(**self.tts_config.audio)
if self.use_phonemes:
self.input_size = len(phonemes)
else:
self.input_size = len(symbols)
# TODO: fix this for multi-speaker model - load speakers
if self.config.tts_speakers is not None:
self.tts_speakers = load_speaker_mapping(self.config.tts_speakers)
num_speakers = len(self.tts_speakers)
else:
num_speakers = 0
self.tts_model = setup_model(self.input_size, num_speakers=num_speakers, c=self.tts_config)
# load model state
cp = torch.load(tts_checkpoint, map_location=torch.device('cpu'))
# load the model
self.tts_model.load_state_dict(cp['model'])
if use_cuda:
self.tts_model.cuda()
self.tts_model.eval()
self.tts_model.decoder.max_decoder_steps = 3000
if 'r' in cp:
self.tts_model.decoder.set_r(cp['r'])
def load_wavernn(self, lib_path, model_file, model_config, use_cuda):
# TODO: set a function in wavernn code base for model setup and call it here.
sys.path.append(lib_path) # set this if WaveRNN is not installed globally
#pylint: disable=import-outside-toplevel
from WaveRNN.models.wavernn import Model
print(" > Loading WaveRNN model ...")
print(" | > model config: ", model_config)
print(" | > model file: ", model_file)
self.wavernn_config = load_config(model_config)
# This is the default architecture we use for our models.
# You might need to update it
self.wavernn = Model(
rnn_dims=512,
fc_dims=512,
mode=self.wavernn_config.mode,
mulaw=self.wavernn_config.mulaw,
pad=self.wavernn_config.pad,
use_aux_net=self.wavernn_config.use_aux_net,
use_upsample_net = self.wavernn_config.use_upsample_net,
upsample_factors=self.wavernn_config.upsample_factors,
feat_dims=80,
compute_dims=128,
res_out_dims=128,
res_blocks=10,
hop_length=self.ap.hop_length,
sample_rate=self.ap.sample_rate,
).cuda()
check = torch.load(model_file)
self.wavernn.load_state_dict(check['model'], map_location="cpu")
if use_cuda:
self.wavernn.cuda()
self.wavernn.eval()
def load_pwgan(self, lib_path, model_file, model_config, use_cuda):
sys.path.append(lib_path) # set this if ParallelWaveGAN is not installed globally
#pylint: disable=import-outside-toplevel
from parallel_wavegan.models import ParallelWaveGANGenerator
print(" > Loading PWGAN model ...")
print(" | > model config: ", model_config)
print(" | > model file: ", model_file)
with open(model_config) as f:
self.pwgan_config = yaml.load(f, Loader=yaml.Loader)
self.pwgan = ParallelWaveGANGenerator(**self.pwgan_config["generator_params"])
self.pwgan.load_state_dict(torch.load(model_file, map_location="cpu")["model"]["generator"])
self.pwgan.remove_weight_norm()
if use_cuda:
self.pwgan.cuda()
self.pwgan.eval()
def save_wav(self, wav, path):
# wav *= 32767 / max(1e-8, np.max(np.abs(wav)))
wav = np.array(wav)
self.ap.save_wav(wav, path)
@staticmethod
def split_into_sentences(text):
text = " " + text + " <stop>"
text = text.replace("\n", " ")
text = re.sub(prefixes, "\\1<prd>", text)
text = re.sub(websites, "<prd>\\1", text)
if "Ph.D" in text:
text = text.replace("Ph.D.", "Ph<prd>D<prd>")
text = re.sub(r"\s" + alphabets + "[.] ", " \\1<prd> ", text)
text = re.sub(acronyms+" "+starters, "\\1<stop> \\2", text)
text = re.sub(alphabets + "[.]" + alphabets + "[.]" + alphabets + "[.]", "\\1<prd>\\2<prd>\\3<prd>", text)
text = re.sub(alphabets + "[.]" + alphabets + "[.]", "\\1<prd>\\2<prd>", text)
text = re.sub(" "+suffixes+"[.] "+starters, " \\1<stop> \\2", text)
text = re.sub(" "+suffixes+"[.]", " \\1<prd>", text)
text = re.sub(" " + alphabets + "[.]", " \\1<prd>", text)
if "" in text:
text = text.replace(".”", "”.")
if "\"" in text:
text = text.replace(".\"", "\".")
if "!" in text:
text = text.replace("!\"", "\"!")
if "?" in text:
text = text.replace("?\"", "\"?")
text = text.replace(".", ".<stop>")
text = text.replace("?", "?<stop>")
text = text.replace("!", "!<stop>")
text = text.replace("<prd>", ".")
sentences = text.split("<stop>")
sentences = sentences[:-1]
sentences = list(filter(None, [s.strip() for s in sentences])) # remove empty sentences
return sentences
def tts(self, text):
wavs = []
sens = self.split_into_sentences(text)
print(sens)
for sen in sens:
# preprocess the given text
inputs = text_to_seqvec(sen, self.tts_config, self.use_cuda)
# synthesize voice
decoder_output, postnet_output, alignments, _ = run_model(
self.tts_model, inputs, self.tts_config, False, None, None)
# convert outputs to numpy
postnet_output, decoder_output, _ = parse_outputs(
postnet_output, decoder_output, alignments)
if self.pwgan:
vocoder_input = torch.FloatTensor(postnet_output.T).unsqueeze(0)
if self.use_cuda:
vocoder_input.cuda()
wav = self.pwgan.inference(vocoder_input, hop_size=self.ap.hop_length)
if self.wavernn:
vocoder_input = torch.FloatTensor(postnet_output.T).unsqueeze(0)
if self.use_cuda:
vocoder_input.cuda()
wav = self.wavernn.generate(vocoder_input, batched=self.config.is_wavernn_batched, target=11000, overlap=550)
else:
wav = inv_spectrogram(postnet_output, self.ap, self.tts_config)
# trim silence
wav = trim_silence(wav, self.ap)
wavs += list(wav)
wavs += [0] * 10000
out = io.BytesIO()
self.save_wav(wavs, out)
return out