mirror of https://github.com/coqui-ai/TTS.git
124 lines
3.7 KiB
Python
124 lines
3.7 KiB
Python
'''
|
||
Cleaners are transformations that run over the input text at both training and eval time.
|
||
|
||
Cleaners can be selected by passing a comma-delimited list of cleaner names as the "cleaners"
|
||
hyperparameter. Some cleaners are English-specific. You'll typically want to use:
|
||
1. "english_cleaners" for English text
|
||
2. "transliteration_cleaners" for non-English text that can be transliterated to ASCII using
|
||
the Unidecode library (https://pypi.python.org/pypi/Unidecode)
|
||
3. "basic_cleaners" if you do not want to transliterate (in this case, you should also update
|
||
the symbols in symbols.py to match your data).
|
||
'''
|
||
|
||
import re
|
||
from unidecode import unidecode
|
||
from .number_norm import normalize_numbers
|
||
|
||
# Regular expression matching whitespace:
|
||
_whitespace_re = re.compile(r'\s+')
|
||
|
||
# List of (regular expression, replacement) pairs for abbreviations:
|
||
_abbreviations = [(re.compile('\\b%s\\.' % x[0], re.IGNORECASE), x[1])
|
||
for x in [
|
||
('mrs', 'misess'),
|
||
('mr', 'mister'),
|
||
('dr', 'doctor'),
|
||
('st', 'saint'),
|
||
('co', 'company'),
|
||
('jr', 'junior'),
|
||
('maj', 'major'),
|
||
('gen', 'general'),
|
||
('drs', 'doctors'),
|
||
('rev', 'reverend'),
|
||
('lt', 'lieutenant'),
|
||
('hon', 'honorable'),
|
||
('sgt', 'sergeant'),
|
||
('capt', 'captain'),
|
||
('esq', 'esquire'),
|
||
('ltd', 'limited'),
|
||
('col', 'colonel'),
|
||
('ft', 'fort'),
|
||
]]
|
||
|
||
|
||
def expand_abbreviations(text):
|
||
for regex, replacement in _abbreviations:
|
||
text = re.sub(regex, replacement, text)
|
||
return text
|
||
|
||
|
||
def expand_numbers(text):
|
||
return normalize_numbers(text)
|
||
|
||
|
||
def lowercase(text):
|
||
return text.lower()
|
||
|
||
|
||
def collapse_whitespace(text):
|
||
return re.sub(_whitespace_re, ' ', text).strip()
|
||
|
||
|
||
def convert_to_ascii(text):
|
||
return unidecode(text)
|
||
|
||
|
||
def remove_aux_symbols(text):
|
||
text = re.sub(r'[\<\>\(\)\[\]\"]+', '', text)
|
||
return text
|
||
|
||
|
||
def replace_symbols(text):
|
||
text = text.replace(';', ',')
|
||
text = text.replace('-', ' ')
|
||
text = text.replace(':', ',')
|
||
text = text.replace('&', 'and')
|
||
return text
|
||
|
||
|
||
def basic_cleaners(text):
|
||
'''Basic pipeline that lowercases and collapses whitespace without transliteration.'''
|
||
text = lowercase(text)
|
||
text = collapse_whitespace(text)
|
||
return text
|
||
|
||
|
||
def transliteration_cleaners(text):
|
||
'''Pipeline for non-English text that transliterates to ASCII.'''
|
||
text = convert_to_ascii(text)
|
||
text = lowercase(text)
|
||
text = collapse_whitespace(text)
|
||
return text
|
||
|
||
|
||
# TODO: elaborate it
|
||
def basic_turkish_cleaners(text):
|
||
'''Pipeline for Turkish text'''
|
||
text = text.replace("I", "ı")
|
||
text = lowercase(text)
|
||
text = collapse_whitespace(text)
|
||
return text
|
||
|
||
|
||
def english_cleaners(text):
|
||
'''Pipeline for English text, including number and abbreviation expansion.'''
|
||
text = convert_to_ascii(text)
|
||
text = lowercase(text)
|
||
text = expand_numbers(text)
|
||
text = expand_abbreviations(text)
|
||
text = replace_symbols(text)
|
||
text = remove_aux_symbols(text)
|
||
text = collapse_whitespace(text)
|
||
return text
|
||
|
||
|
||
def phoneme_cleaners(text):
|
||
'''Pipeline for phonemes mode, including number and abbreviation expansion.'''
|
||
text = convert_to_ascii(text)
|
||
text = expand_numbers(text)
|
||
text = expand_abbreviations(text)
|
||
text = replace_symbols(text)
|
||
text = remove_aux_symbols(text)
|
||
text = collapse_whitespace(text)
|
||
return text
|