mirror of https://github.com/coqui-ai/TTS.git
329 lines
9.7 KiB
Plaintext
329 lines
9.7 KiB
Plaintext
{
|
||
"nbformat": 4,
|
||
"nbformat_minor": 0,
|
||
"metadata": {
|
||
"colab": {
|
||
"name": "DDC-TTS_and_MultiBand-MelGAN_Example.ipynb",
|
||
"provenance": [],
|
||
"collapsed_sections": [],
|
||
"toc_visible": true
|
||
},
|
||
"kernelspec": {
|
||
"name": "python3",
|
||
"display_name": "Python 3"
|
||
},
|
||
"accelerator": "GPU"
|
||
},
|
||
"cells": [
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"id": "6LWsNd3_M3MP",
|
||
"colab_type": "text"
|
||
},
|
||
"source": [
|
||
"# Mozilla TTS on CPU Real-Time Speech Synthesis "
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"id": "FAqrSIWgLyP0",
|
||
"colab_type": "text"
|
||
},
|
||
"source": [
|
||
"We use Tacotron2 and MultiBand-Melgan models and LJSpeech dataset.\n",
|
||
"\n",
|
||
"Tacotron2 is trained using [Double Decoder Consistency](https://erogol.com/solving-attention-problems-of-tts-models-with-double-decoder-consistency/) (DDC) only for 130K steps (3 days) with a single GPU.\n",
|
||
"\n",
|
||
"MultiBand-Melgan is trained 1.45M steps with real spectrograms.\n",
|
||
"\n",
|
||
"Note that both model performances can be improved with more training."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"id": "Ku-dA4DKoeXk",
|
||
"colab_type": "text"
|
||
},
|
||
"source": [
|
||
"### Download Models"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"metadata": {
|
||
"id": "jGIgnWhGsxU1",
|
||
"colab_type": "code",
|
||
"colab": {
|
||
"base_uri": "https://localhost:8080/",
|
||
"height": 162
|
||
},
|
||
"outputId": "88725e41-a8dc-4885-b3bf-cac939f38abe",
|
||
"tags": []
|
||
},
|
||
"source": [
|
||
"!gdown --id 1dntzjWFg7ufWaTaFy80nRz-Tu02xWZos -O data/tts_model.pth.tar\n",
|
||
"!gdown --id 18CQ6G6tBEOfvCHlPqP8EBI4xWbrr9dBc -O data/config.json"
|
||
],
|
||
"execution_count": null,
|
||
"outputs": []
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"metadata": {
|
||
"id": "4dnpE0-kvTsu",
|
||
"colab_type": "code",
|
||
"colab": {
|
||
"base_uri": "https://localhost:8080/",
|
||
"height": 235
|
||
},
|
||
"outputId": "76377c6d-789c-4995-ba00-a21a6e1c401e",
|
||
"tags": []
|
||
},
|
||
"source": [
|
||
"!gdown --id 1X09hHAyAJOnrplCUMAdW_t341Kor4YR4 -O data/vocoder_model.pth.tar\n",
|
||
"!gdown --id \"1qN7vQRIYkzvOX_DtiZtTajzoZ1eW1-Eg\" -O data/config_vocoder.json\n",
|
||
"!gdown --id 11oY3Tv0kQtxK_JPgxrfesa99maVXHNxU -O data/scale_stats.npy"
|
||
],
|
||
"execution_count": null,
|
||
"outputs": []
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"id": "Zlgi8fPdpRF0",
|
||
"colab_type": "text"
|
||
},
|
||
"source": [
|
||
"### Define TTS function"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"metadata": {
|
||
"id": "f-Yc42nQZG5A",
|
||
"colab_type": "code",
|
||
"colab": {}
|
||
},
|
||
"source": [
|
||
"def tts(model, text, CONFIG, use_cuda, ap, use_gl, figures=True):\n",
|
||
" t_1 = time.time()\n",
|
||
" waveform, alignment, mel_spec, mel_postnet_spec, stop_tokens, inputs = synthesis(model, text, CONFIG, use_cuda, ap, speaker_id, style_wav=None,\n",
|
||
" truncated=False, enable_eos_bos_chars=CONFIG.enable_eos_bos_chars)\n",
|
||
" # mel_postnet_spec = ap._denormalize(mel_postnet_spec.T)\n",
|
||
" if not use_gl:\n",
|
||
" waveform = vocoder_model.inference(torch.FloatTensor(mel_postnet_spec.T).unsqueeze(0))\n",
|
||
" waveform = waveform.flatten()\n",
|
||
" if use_cuda:\n",
|
||
" waveform = waveform.cpu()\n",
|
||
" waveform = waveform.numpy()\n",
|
||
" rtf = (time.time() - t_1) / (len(waveform) / ap.sample_rate)\n",
|
||
" tps = (time.time() - t_1) / len(waveform)\n",
|
||
" print(waveform.shape)\n",
|
||
" print(\" > Run-time: {}\".format(time.time() - t_1))\n",
|
||
" print(\" > Real-time factor: {}\".format(rtf))\n",
|
||
" print(\" > Time per step: {}\".format(tps))\n",
|
||
" IPython.display.display(IPython.display.Audio(waveform, rate=CONFIG.audio['sample_rate'])) \n",
|
||
" return alignment, mel_postnet_spec, stop_tokens, waveform"
|
||
],
|
||
"execution_count": null,
|
||
"outputs": []
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"id": "ZksegYQepkFg",
|
||
"colab_type": "text"
|
||
},
|
||
"source": [
|
||
"### Load Models"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"metadata": {
|
||
"id": "oVa0kOamprgj",
|
||
"colab_type": "code",
|
||
"colab": {}
|
||
},
|
||
"source": [
|
||
"import os\n",
|
||
"import torch\n",
|
||
"import time\n",
|
||
"import IPython\n",
|
||
"\n",
|
||
"from mozilla_voice_tts.tts.utils.generic_utils import setup_model\n",
|
||
"from mozilla_voice_tts.utils.io import load_config\n",
|
||
"from mozilla_voice_tts.tts.utils.text.symbols import symbols, phonemes\n",
|
||
"from mozilla_voice_tts.utils.audio import AudioProcessor\n",
|
||
"from mozilla_voice_tts.tts.utils.synthesis import synthesis"
|
||
],
|
||
"execution_count": null,
|
||
"outputs": []
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"metadata": {
|
||
"id": "EY-sHVO8IFSH",
|
||
"colab_type": "code",
|
||
"colab": {}
|
||
},
|
||
"source": [
|
||
"# runtime settings\n",
|
||
"use_cuda = False"
|
||
],
|
||
"execution_count": null,
|
||
"outputs": []
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"metadata": {
|
||
"id": "_1aIUp2FpxOQ",
|
||
"colab_type": "code",
|
||
"colab": {}
|
||
},
|
||
"source": [
|
||
"# model paths\n",
|
||
"TTS_MODEL = \"data/tts_model.pth.tar\"\n",
|
||
"TTS_CONFIG = \"data/config.json\"\n",
|
||
"VOCODER_MODEL = \"data/vocoder_model.pth.tar\"\n",
|
||
"VOCODER_CONFIG = \"data/config_vocoder.json\""
|
||
],
|
||
"execution_count": null,
|
||
"outputs": []
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"metadata": {
|
||
"id": "CpgmdBVQplbv",
|
||
"colab_type": "code",
|
||
"colab": {}
|
||
},
|
||
"source": [
|
||
"# load configs\n",
|
||
"TTS_CONFIG = load_config(TTS_CONFIG)\n",
|
||
"VOCODER_CONFIG = load_config(VOCODER_CONFIG)"
|
||
],
|
||
"execution_count": null,
|
||
"outputs": []
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"metadata": {
|
||
"id": "zmrQxiozIUVE",
|
||
"colab_type": "code",
|
||
"colab": {
|
||
"base_uri": "https://localhost:8080/",
|
||
"height": 471
|
||
},
|
||
"outputId": "60c4daa0-4c5b-4a2e-fe0d-be437d003a49",
|
||
"tags": []
|
||
},
|
||
"source": [
|
||
"# load the audio processor\n",
|
||
"TTS_CONFIG.audio['stats_path'] = 'data/scale_stats.npy'\n",
|
||
"ap = AudioProcessor(**TTS_CONFIG.audio) "
|
||
],
|
||
"execution_count": null,
|
||
"outputs": []
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"metadata": {
|
||
"id": "8fLoI4ipqMeS",
|
||
"colab_type": "code",
|
||
"colab": {
|
||
"base_uri": "https://localhost:8080/",
|
||
"height": 35
|
||
},
|
||
"outputId": "b789066e-e305-42ad-b3ca-eba8d9267382",
|
||
"tags": []
|
||
},
|
||
"source": [
|
||
"# LOAD TTS MODEL\n",
|
||
"# multi speaker \n",
|
||
"speaker_id = None\n",
|
||
"speakers = []\n",
|
||
"\n",
|
||
"# load the model\n",
|
||
"num_chars = len(phonemes) if TTS_CONFIG.use_phonemes else len(symbols)\n",
|
||
"model = setup_model(num_chars, len(speakers), TTS_CONFIG)\n",
|
||
"\n",
|
||
"# load model state\n",
|
||
"cp = torch.load(TTS_MODEL, map_location=torch.device('cpu'))\n",
|
||
"\n",
|
||
"# load the model\n",
|
||
"model.load_state_dict(cp['model'])\n",
|
||
"if use_cuda:\n",
|
||
" model.cuda()\n",
|
||
"model.eval()\n",
|
||
"\n",
|
||
"# set model stepsize\n",
|
||
"if 'r' in cp:\n",
|
||
" model.decoder.set_r(cp['r'])"
|
||
],
|
||
"execution_count": null,
|
||
"outputs": []
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"metadata": {
|
||
"id": "zKoq0GgzqzhQ",
|
||
"colab_type": "code",
|
||
"colab": {
|
||
"base_uri": "https://localhost:8080/",
|
||
"height": 1000
|
||
},
|
||
"outputId": "234efc61-f37a-40bc-95a3-b51896018ccb",
|
||
"tags": []
|
||
},
|
||
"source": [
|
||
"from mozilla_voice_tts.vocoder.utils.generic_utils import setup_generator\n",
|
||
"\n",
|
||
"# LOAD VOCODER MODEL\n",
|
||
"vocoder_model = setup_generator(VOCODER_CONFIG)\n",
|
||
"vocoder_model.load_state_dict(torch.load(VOCODER_MODEL, map_location=\"cpu\")[\"model\"])\n",
|
||
"vocoder_model.remove_weight_norm()\n",
|
||
"vocoder_model.inference_padding = 0\n",
|
||
"\n",
|
||
"ap_vocoder = AudioProcessor(**VOCODER_CONFIG['audio']) \n",
|
||
"if use_cuda:\n",
|
||
" vocoder_model.cuda()\n",
|
||
"vocoder_model.eval()"
|
||
],
|
||
"execution_count": null,
|
||
"outputs": []
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"id": "Ws_YkPKsLgo-",
|
||
"colab_type": "text"
|
||
},
|
||
"source": [
|
||
"## Run Inference"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"metadata": {
|
||
"id": "FuWxZ9Ey5Puj",
|
||
"colab_type": "code",
|
||
"colab": {
|
||
"base_uri": "https://localhost:8080/",
|
||
"height": 134
|
||
},
|
||
"outputId": "9c06adad-5451-4393-89a1-a2e7dc39ab91",
|
||
"tags": []
|
||
},
|
||
"source": [
|
||
"sentence = \"Bill got in the habit of asking himself “Is that thought true?” and if he wasn’t absolutely certain it was, he just let it go.\"\n",
|
||
"align, spec, stop_tokens, wav = tts(model, sentence, TTS_CONFIG, use_cuda, ap, use_gl=False, figures=True)"
|
||
],
|
||
"execution_count": null,
|
||
"outputs": []
|
||
}
|
||
]
|
||
} |