mirror of https://github.com/coqui-ai/TTS.git
85 lines
2.4 KiB
Python
85 lines
2.4 KiB
Python
import glob
|
|
import os
|
|
import shutil
|
|
|
|
from tests import get_device_id, get_tests_output_path, run_cli
|
|
from TTS.config.shared_configs import BaseAudioConfig
|
|
from TTS.speaker_encoder.speaker_encoder_config import SpeakerEncoderConfig
|
|
|
|
|
|
def run_test_train():
|
|
command = (
|
|
f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_encoder.py --config_path {config_path} "
|
|
f"--coqpit.output_path {output_path} "
|
|
"--coqpit.datasets.0.name ljspeech "
|
|
"--coqpit.datasets.0.meta_file_train metadata.csv "
|
|
"--coqpit.datasets.0.meta_file_val metadata.csv "
|
|
"--coqpit.datasets.0.path tests/data/ljspeech "
|
|
)
|
|
run_cli(command)
|
|
|
|
|
|
config_path = os.path.join(get_tests_output_path(), "test_speaker_encoder_config.json")
|
|
output_path = os.path.join(get_tests_output_path(), "train_outputs")
|
|
|
|
config = SpeakerEncoderConfig(
|
|
batch_size=4,
|
|
num_speakers_in_batch=1,
|
|
num_utters_per_speaker=10,
|
|
num_loader_workers=0,
|
|
max_train_step=2,
|
|
print_step=1,
|
|
save_step=1,
|
|
print_eval=True,
|
|
audio=BaseAudioConfig(num_mels=80),
|
|
)
|
|
config.audio.do_trim_silence = True
|
|
config.audio.trim_db = 60
|
|
config.save_json(config_path)
|
|
|
|
print(config)
|
|
# train the model for one epoch
|
|
run_test_train()
|
|
|
|
# Find latest folder
|
|
continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime)
|
|
|
|
# restore the model and continue training for one more epoch
|
|
command_train = (
|
|
f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_encoder.py --continue_path {continue_path} "
|
|
)
|
|
run_cli(command_train)
|
|
shutil.rmtree(continue_path)
|
|
|
|
# test resnet speaker encoder
|
|
config.model_params["model_name"] = "resnet"
|
|
config.save_json(config_path)
|
|
|
|
# train the model for one epoch
|
|
run_test_train()
|
|
|
|
# Find latest folder
|
|
continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime)
|
|
|
|
# restore the model and continue training for one more epoch
|
|
command_train = (
|
|
f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_encoder.py --continue_path {continue_path} "
|
|
)
|
|
run_cli(command_train)
|
|
shutil.rmtree(continue_path)
|
|
|
|
# test model with ge2e loss function
|
|
config.loss = "ge2e"
|
|
config.save_json(config_path)
|
|
run_test_train()
|
|
|
|
# test model with angleproto loss function
|
|
config.loss = "angleproto"
|
|
config.save_json(config_path)
|
|
run_test_train()
|
|
|
|
# test model with softmaxproto loss function
|
|
config.loss = "softmaxproto"
|
|
config.save_json(config_path)
|
|
run_test_train()
|