TTS/utils/synthesis.py

118 lines
4.2 KiB
Python

import io
import time
import librosa
import torch
import numpy as np
from .text import text_to_sequence, phoneme_to_sequence, sequence_to_phoneme
from .visual import visualize
from matplotlib import pylab as plt
def text_to_seqvec(text, CONFIG, use_cuda):
text_cleaner = [CONFIG.text_cleaner]
# text ot phonemes to sequence vector
if CONFIG.use_phonemes:
seq = np.asarray(
phoneme_to_sequence(text, text_cleaner, CONFIG.phoneme_language,
CONFIG.enable_eos_bos_chars),
dtype=np.int32)
else:
seq = np.asarray(text_to_sequence(text, text_cleaner), dtype=np.int32)
# torch tensor
chars_var = torch.from_numpy(seq).unsqueeze(0)
if use_cuda:
chars_var = chars_var.cuda()
return chars_var.long()
def compute_style_mel(style_wav, ap, use_cuda):
print(style_wav)
style_mel = torch.FloatTensor(ap.melspectrogram(
ap.load_wav(style_wav))).unsqueeze(0)
if use_cuda:
return style_mel.cuda()
else:
return style_mel
def run_model(model, inputs, speaker_id, CONFIG, truncated, style_mel=None):
if CONFIG.model == "TacotronGST" and style_mel is not None:
decoder_output, postnet_output, alignments, stop_tokens = model.inference(
inputs, style_mel, speaker_id)
else:
if truncated:
decoder_output, postnet_output, alignments, stop_tokens = model.inference_truncated(
inputs, speaker_id)
else:
decoder_output, postnet_output, alignments, stop_tokens = model.inference(
inputs, speaker_id)
return decoder_output, postnet_output, alignments, stop_tokens
def parse_outputs(postnet_output, decoder_output, alignments):
postnet_output = postnet_output[0].data.cpu().numpy()
decoder_output = decoder_output[0].data.cpu().numpy()
alignment = alignments[0].cpu().data.numpy()
return postnet_output, decoder_output, alignment
def trim_silence(wav):
return wav[:ap.find_endpoint(wav)]
def inv_spectrogram(postnet_output, ap, CONFIG):
if CONFIG.model in ["Tacotron", "TacotronGST"]:
wav = ap.inv_spectrogram(postnet_output.T)
else:
wav = ap.inv_mel_spectrogram(postnet_output.T)
return wav
def synthesis(model,
text,
speaker_id,
CONFIG,
use_cuda,
ap,
style_wav=None,
truncated=False,
enable_eos_bos_chars=False,
trim_silence=False):
"""Synthesize voice for the given text.
Args:
model (TTS.models): model to synthesize.
text (str): target text
speaker_id (int): id of speaker
CONFIG (dict): config dictionary to be loaded from config.json.
use_cuda (bool): enable cuda.
ap (TTS.utils.audio.AudioProcessor): audio processor to process
model outputs.
style_wav (str): Uses for style embedding of GST.
truncated (bool): keep model states after inference. It can be used
for continuous inference at long texts.
enable_eos_bos_chars (bool): enable special chars for end of sentence and start of sentence.
trim_silence (bool): trim silence after synthesis.
"""
# GST processing
style_mel = None
if CONFIG.model == "TacotronGST" and style_wav is not None:
style_mel = compute_style_mel(style_wav, ap, use_cuda)
# preprocess the given text
inputs = text_to_seqvec(text, CONFIG, use_cuda)
speaker_id = np.asarray(speaker_id)
speaker_id = torch.from_numpy(speaker_id).unsqueeze(0)
if use_cuda:
speaker_id.cuda()
# synthesize voice
decoder_output, postnet_output, alignments, stop_tokens = run_model(
model, inputs, speaker_id, CONFIG, truncated, style_mel)
# convert outputs to numpy
postnet_output, decoder_output, alignment = parse_outputs(
postnet_output, decoder_output, alignments)
# plot results
wav = inv_spectrogram(postnet_output, ap, CONFIG)
# trim silence
if trim_silence:
wav = trim_silence(wav)
return wav, alignment, decoder_output, postnet_output, stop_tokens