mirror of https://github.com/coqui-ai/TTS.git
348 lines
16 KiB
Python
348 lines
16 KiB
Python
import os
|
|
import glob
|
|
import torch
|
|
import shutil
|
|
import datetime
|
|
import subprocess
|
|
import importlib
|
|
import numpy as np
|
|
from collections import Counter
|
|
|
|
|
|
def get_git_branch():
|
|
try:
|
|
out = subprocess.check_output(["git", "branch"]).decode("utf8")
|
|
current = next(line for line in out.split("\n")
|
|
if line.startswith("*"))
|
|
current.replace("* ", "")
|
|
except subprocess.CalledProcessError:
|
|
current = "inside_docker"
|
|
return current
|
|
|
|
|
|
def get_commit_hash():
|
|
"""https://stackoverflow.com/questions/14989858/get-the-current-git-hash-in-a-python-script"""
|
|
# try:
|
|
# subprocess.check_output(['git', 'diff-index', '--quiet',
|
|
# 'HEAD']) # Verify client is clean
|
|
# except:
|
|
# raise RuntimeError(
|
|
# " !! Commit before training to get the commit hash.")
|
|
try:
|
|
commit = subprocess.check_output(
|
|
['git', 'rev-parse', '--short', 'HEAD']).decode().strip()
|
|
# Not copying .git folder into docker container
|
|
except subprocess.CalledProcessError:
|
|
commit = "0000000"
|
|
print(' > Git Hash: {}'.format(commit))
|
|
return commit
|
|
|
|
|
|
def create_experiment_folder(root_path, model_name, debug):
|
|
""" Create a folder with the current date and time """
|
|
date_str = datetime.datetime.now().strftime("%B-%d-%Y_%I+%M%p")
|
|
if debug:
|
|
commit_hash = 'debug'
|
|
else:
|
|
commit_hash = get_commit_hash()
|
|
output_folder = os.path.join(
|
|
root_path, model_name + '-' + date_str + '-' + commit_hash)
|
|
os.makedirs(output_folder, exist_ok=True)
|
|
print(" > Experiment folder: {}".format(output_folder))
|
|
return output_folder
|
|
|
|
|
|
def remove_experiment_folder(experiment_path):
|
|
"""Check folder if there is a checkpoint, otherwise remove the folder"""
|
|
|
|
checkpoint_files = glob.glob(experiment_path + "/*.pth.tar")
|
|
if not checkpoint_files:
|
|
if os.path.exists(experiment_path):
|
|
shutil.rmtree(experiment_path, ignore_errors=True)
|
|
print(" ! Run is removed from {}".format(experiment_path))
|
|
else:
|
|
print(" ! Run is kept in {}".format(experiment_path))
|
|
|
|
|
|
def count_parameters(model):
|
|
r"""Count number of trainable parameters in a network"""
|
|
return sum(p.numel() for p in model.parameters() if p.requires_grad)
|
|
|
|
|
|
def split_dataset(items):
|
|
is_multi_speaker = False
|
|
speakers = [item[-1] for item in items]
|
|
is_multi_speaker = len(set(speakers)) > 1
|
|
eval_split_size = 500 if len(items) * 0.01 > 500 else int(
|
|
len(items) * 0.01)
|
|
np.random.seed(0)
|
|
np.random.shuffle(items)
|
|
if is_multi_speaker:
|
|
items_eval = []
|
|
# most stupid code ever -- Fix it !
|
|
while len(items_eval) < eval_split_size:
|
|
speakers = [item[-1] for item in items]
|
|
speaker_counter = Counter(speakers)
|
|
item_idx = np.random.randint(0, len(items))
|
|
if speaker_counter[items[item_idx][-1]] > 1:
|
|
items_eval.append(items[item_idx])
|
|
del items[item_idx]
|
|
return items_eval, items
|
|
return items[:eval_split_size], items[eval_split_size:]
|
|
|
|
|
|
# from https://gist.github.com/jihunchoi/f1434a77df9db1bb337417854b398df1
|
|
def sequence_mask(sequence_length, max_len=None):
|
|
if max_len is None:
|
|
max_len = sequence_length.data.max()
|
|
batch_size = sequence_length.size(0)
|
|
seq_range = torch.arange(0, max_len).long()
|
|
seq_range_expand = seq_range.unsqueeze(0).expand(batch_size, max_len)
|
|
if sequence_length.is_cuda:
|
|
seq_range_expand = seq_range_expand.to(sequence_length.device)
|
|
seq_length_expand = (
|
|
sequence_length.unsqueeze(1).expand_as(seq_range_expand))
|
|
# B x T_max
|
|
return seq_range_expand < seq_length_expand
|
|
|
|
|
|
def set_init_dict(model_dict, checkpoint, c):
|
|
# Partial initialization: if there is a mismatch with new and old layer, it is skipped.
|
|
for k, v in checkpoint['model'].items():
|
|
if k not in model_dict:
|
|
print(" | > Layer missing in the model definition: {}".format(k))
|
|
# 1. filter out unnecessary keys
|
|
pretrained_dict = {
|
|
k: v
|
|
for k, v in checkpoint['model'].items() if k in model_dict
|
|
}
|
|
# 2. filter out different size layers
|
|
pretrained_dict = {
|
|
k: v
|
|
for k, v in pretrained_dict.items()
|
|
if v.numel() == model_dict[k].numel()
|
|
}
|
|
# 3. skip reinit layers
|
|
if c.reinit_layers is not None:
|
|
for reinit_layer_name in c.reinit_layers:
|
|
pretrained_dict = {
|
|
k: v
|
|
for k, v in pretrained_dict.items()
|
|
if reinit_layer_name not in k
|
|
}
|
|
# 4. overwrite entries in the existing state dict
|
|
model_dict.update(pretrained_dict)
|
|
print(" | > {} / {} layers are restored.".format(len(pretrained_dict),
|
|
len(model_dict)))
|
|
return model_dict
|
|
|
|
|
|
def setup_model(num_chars, num_speakers, c):
|
|
print(" > Using model: {}".format(c.model))
|
|
MyModel = importlib.import_module('TTS.models.' + c.model.lower())
|
|
MyModel = getattr(MyModel, c.model)
|
|
if c.model.lower() in "tacotron":
|
|
model = MyModel(num_chars=num_chars,
|
|
num_speakers=num_speakers,
|
|
r=c.r,
|
|
postnet_output_dim=c.audio['num_freq'],
|
|
decoder_output_dim=c.audio['num_mels'],
|
|
gst=c.use_gst,
|
|
memory_size=c.memory_size,
|
|
attn_type=c.attention_type,
|
|
attn_win=c.windowing,
|
|
attn_norm=c.attention_norm,
|
|
prenet_type=c.prenet_type,
|
|
prenet_dropout=c.prenet_dropout,
|
|
forward_attn=c.use_forward_attn,
|
|
trans_agent=c.transition_agent,
|
|
forward_attn_mask=c.forward_attn_mask,
|
|
location_attn=c.location_attn,
|
|
attn_K=c.attention_heads,
|
|
separate_stopnet=c.separate_stopnet,
|
|
bidirectional_decoder=c.bidirectional_decoder)
|
|
elif c.model.lower() == "tacotron2":
|
|
model = MyModel(num_chars=num_chars,
|
|
num_speakers=num_speakers,
|
|
r=c.r,
|
|
postnet_output_dim=c.audio['num_mels'],
|
|
decoder_output_dim=c.audio['num_mels'],
|
|
attn_type=c.attention_type,
|
|
attn_win=c.windowing,
|
|
attn_norm=c.attention_norm,
|
|
prenet_type=c.prenet_type,
|
|
prenet_dropout=c.prenet_dropout,
|
|
forward_attn=c.use_forward_attn,
|
|
trans_agent=c.transition_agent,
|
|
forward_attn_mask=c.forward_attn_mask,
|
|
location_attn=c.location_attn,
|
|
attn_K=c.attention_heads,
|
|
separate_stopnet=c.separate_stopnet,
|
|
bidirectional_decoder=c.bidirectional_decoder)
|
|
return model
|
|
|
|
class KeepAverage():
|
|
def __init__(self):
|
|
self.avg_values = {}
|
|
self.iters = {}
|
|
|
|
def __getitem__(self, key):
|
|
return self.avg_values[key]
|
|
|
|
def items(self):
|
|
return self.avg_values.items()
|
|
|
|
def add_value(self, name, init_val=0, init_iter=0):
|
|
self.avg_values[name] = init_val
|
|
self.iters[name] = init_iter
|
|
|
|
def update_value(self, name, value, weighted_avg=False):
|
|
if weighted_avg:
|
|
self.avg_values[name] = 0.99 * self.avg_values[name] + 0.01 * value
|
|
self.iters[name] += 1
|
|
else:
|
|
self.avg_values[name] = self.avg_values[name] * \
|
|
self.iters[name] + value
|
|
self.iters[name] += 1
|
|
self.avg_values[name] /= self.iters[name]
|
|
|
|
def add_values(self, name_dict):
|
|
for key, value in name_dict.items():
|
|
self.add_value(key, init_val=value)
|
|
|
|
def update_values(self, value_dict):
|
|
for key, value in value_dict.items():
|
|
self.update_value(key, value)
|
|
|
|
|
|
def _check_argument(name, c, enum_list=None, max_val=None, min_val=None, restricted=False, val_type=None, alternative=None):
|
|
if alternative in c.keys() and c[alternative] is not None:
|
|
return
|
|
if restricted:
|
|
assert name in c.keys(), f' [!] {name} not defined in config.json'
|
|
if name in c.keys():
|
|
if max_val:
|
|
assert c[name] <= max_val, f' [!] {name} is larger than max value {max_val}'
|
|
if min_val:
|
|
assert c[name] >= min_val, f' [!] {name} is smaller than min value {min_val}'
|
|
if enum_list:
|
|
assert c[name].lower() in enum_list, f' [!] {name} is not a valid value'
|
|
if val_type:
|
|
assert isinstance(c[name], val_type) or c[name] is None, f' [!] {name} has wrong type - {type(c[name])} vs {val_type}'
|
|
|
|
|
|
def check_config(c):
|
|
_check_argument('model', c, enum_list=['tacotron', 'tacotron2'], restricted=True, val_type=str)
|
|
_check_argument('run_name', c, restricted=True, val_type=str)
|
|
_check_argument('run_description', c, val_type=str)
|
|
|
|
# AUDIO
|
|
_check_argument('audio', c, restricted=True, val_type=dict)
|
|
|
|
# audio processing parameters
|
|
_check_argument('num_mels', c['audio'], restricted=True, val_type=int, min_val=10, max_val=2056)
|
|
_check_argument('num_freq', c['audio'], restricted=True, val_type=int, min_val=128, max_val=4058)
|
|
_check_argument('sample_rate', c['audio'], restricted=True, val_type=int, min_val=512, max_val=100000)
|
|
_check_argument('frame_length_ms', c['audio'], restricted=True, val_type=float, min_val=10, max_val=1000, alternative='win_length')
|
|
_check_argument('frame_shift_ms', c['audio'], restricted=True, val_type=float, min_val=1, max_val=1000, alternative='hop_length')
|
|
_check_argument('preemphasis', c['audio'], restricted=True, val_type=float, min_val=0, max_val=1)
|
|
_check_argument('min_level_db', c['audio'], restricted=True, val_type=int, min_val=-1000, max_val=10)
|
|
_check_argument('ref_level_db', c['audio'], restricted=True, val_type=int, min_val=0, max_val=1000)
|
|
_check_argument('power', c['audio'], restricted=True, val_type=float, min_val=1, max_val=5)
|
|
_check_argument('griffin_lim_iters', c['audio'], restricted=True, val_type=int, min_val=10, max_val=1000)
|
|
|
|
# vocabulary parameters
|
|
_check_argument('characters', c, restricted=False, val_type=dict)
|
|
_check_argument('pad', c['characters'] if 'characters' in c.keys() else {}, restricted='characters' in c.keys(), val_type=str)
|
|
_check_argument('eos', c['characters'] if 'characters' in c.keys() else {}, restricted='characters' in c.keys(), val_type=str)
|
|
_check_argument('bos', c['characters'] if 'characters' in c.keys() else {}, restricted='characters' in c.keys(), val_type=str)
|
|
_check_argument('characters', c['characters'] if 'characters' in c.keys() else {}, restricted='characters' in c.keys(), val_type=str)
|
|
_check_argument('phonemes', c['characters'] if 'characters' in c.keys() else {}, restricted='characters' in c.keys(), val_type=str)
|
|
_check_argument('punctuations', c['characters'] if 'characters' in c.keys() else {}, restricted='characters' in c.keys(), val_type=str)
|
|
|
|
# normalization parameters
|
|
_check_argument('signal_norm', c['audio'], restricted=True, val_type=bool)
|
|
_check_argument('symmetric_norm', c['audio'], restricted=True, val_type=bool)
|
|
_check_argument('max_norm', c['audio'], restricted=True, val_type=float, min_val=0.1, max_val=1000)
|
|
_check_argument('clip_norm', c['audio'], restricted=True, val_type=bool)
|
|
_check_argument('mel_fmin', c['audio'], restricted=True, val_type=float, min_val=0.0, max_val=1000)
|
|
_check_argument('mel_fmax', c['audio'], restricted=True, val_type=float, min_val=500.0)
|
|
_check_argument('do_trim_silence', c['audio'], restricted=True, val_type=bool)
|
|
_check_argument('trim_db', c['audio'], restricted=True, val_type=int)
|
|
|
|
# training parameters
|
|
_check_argument('batch_size', c, restricted=True, val_type=int, min_val=1)
|
|
_check_argument('eval_batch_size', c, restricted=True, val_type=int, min_val=1)
|
|
_check_argument('r', c, restricted=True, val_type=int, min_val=1)
|
|
_check_argument('gradual_training', c, restricted=False, val_type=list)
|
|
_check_argument('loss_masking', c, restricted=True, val_type=bool)
|
|
# _check_argument('grad_accum', c, restricted=True, val_type=int, min_val=1, max_val=100)
|
|
|
|
# validation parameters
|
|
_check_argument('run_eval', c, restricted=True, val_type=bool)
|
|
_check_argument('test_delay_epochs', c, restricted=True, val_type=int, min_val=0)
|
|
_check_argument('test_sentences_file', c, restricted=False, val_type=str)
|
|
|
|
# optimizer
|
|
_check_argument('noam_schedule', c, restricted=False, val_type=bool)
|
|
_check_argument('grad_clip', c, restricted=True, val_type=float, min_val=0.0)
|
|
_check_argument('epochs', c, restricted=True, val_type=int, min_val=1)
|
|
_check_argument('lr', c, restricted=True, val_type=float, min_val=0)
|
|
_check_argument('wd', c, restricted=True, val_type=float, min_val=0)
|
|
_check_argument('warmup_steps', c, restricted=True, val_type=int, min_val=0)
|
|
_check_argument('seq_len_norm', c, restricted=True, val_type=bool)
|
|
|
|
# tacotron prenet
|
|
_check_argument('memory_size', c, restricted=True, val_type=int, min_val=-1)
|
|
_check_argument('prenet_type', c, restricted=True, val_type=str, enum_list=['original', 'bn'])
|
|
_check_argument('prenet_dropout', c, restricted=True, val_type=bool)
|
|
|
|
# attention
|
|
_check_argument('attention_type', c, restricted=True, val_type=str, enum_list=['graves', 'original'])
|
|
_check_argument('attention_heads', c, restricted=True, val_type=int)
|
|
_check_argument('attention_norm', c, restricted=True, val_type=str, enum_list=['sigmoid', 'softmax'])
|
|
_check_argument('windowing', c, restricted=True, val_type=bool)
|
|
_check_argument('use_forward_attn', c, restricted=True, val_type=bool)
|
|
_check_argument('forward_attn_mask', c, restricted=True, val_type=bool)
|
|
_check_argument('transition_agent', c, restricted=True, val_type=bool)
|
|
_check_argument('transition_agent', c, restricted=True, val_type=bool)
|
|
_check_argument('location_attn', c, restricted=True, val_type=bool)
|
|
_check_argument('bidirectional_decoder', c, restricted=True, val_type=bool)
|
|
|
|
# stopnet
|
|
_check_argument('stopnet', c, restricted=True, val_type=bool)
|
|
_check_argument('separate_stopnet', c, restricted=True, val_type=bool)
|
|
|
|
# tensorboard
|
|
_check_argument('print_step', c, restricted=True, val_type=int, min_val=1)
|
|
_check_argument('save_step', c, restricted=True, val_type=int, min_val=1)
|
|
_check_argument('checkpoint', c, restricted=True, val_type=bool)
|
|
_check_argument('tb_model_param_stats', c, restricted=True, val_type=bool)
|
|
|
|
# dataloading
|
|
# pylint: disable=import-outside-toplevel
|
|
from TTS.utils.text import cleaners
|
|
_check_argument('text_cleaner', c, restricted=True, val_type=str, enum_list=dir(cleaners))
|
|
_check_argument('enable_eos_bos_chars', c, restricted=True, val_type=bool)
|
|
_check_argument('num_loader_workers', c, restricted=True, val_type=int, min_val=0)
|
|
_check_argument('num_val_loader_workers', c, restricted=True, val_type=int, min_val=0)
|
|
_check_argument('batch_group_size', c, restricted=True, val_type=int, min_val=0)
|
|
_check_argument('min_seq_len', c, restricted=True, val_type=int, min_val=0)
|
|
_check_argument('max_seq_len', c, restricted=True, val_type=int, min_val=10)
|
|
|
|
# paths
|
|
_check_argument('output_path', c, restricted=True, val_type=str)
|
|
|
|
# multi-speaker gst
|
|
_check_argument('use_speaker_embedding', c, restricted=True, val_type=bool)
|
|
_check_argument('style_wav_for_test', c, restricted=True, val_type=str)
|
|
_check_argument('use_gst', c, restricted=True, val_type=bool)
|
|
|
|
# datasets - checking only the first entry
|
|
_check_argument('datasets', c, restricted=True, val_type=list)
|
|
for dataset_entry in c['datasets']:
|
|
_check_argument('name', dataset_entry, restricted=True, val_type=str)
|
|
_check_argument('path', dataset_entry, restricted=True, val_type=str)
|
|
_check_argument('meta_file_train', dataset_entry, restricted=True, val_type=str)
|
|
_check_argument('meta_file_val', dataset_entry, restricted=True, val_type=str)
|