mirror of https://github.com/coqui-ai/TTS.git
150 lines
6.1 KiB
Python
150 lines
6.1 KiB
Python
import os
|
|
import copy
|
|
import torch
|
|
import unittest
|
|
|
|
from torch import optim
|
|
from torch import nn
|
|
from TTS.utils.io import load_config
|
|
from TTS.layers.losses import L1LossMasked
|
|
from TTS.models.tacotron import Tacotron
|
|
|
|
#pylint: disable=unused-variable
|
|
|
|
torch.manual_seed(1)
|
|
use_cuda = torch.cuda.is_available()
|
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
|
|
file_path = os.path.dirname(os.path.realpath(__file__))
|
|
c = load_config(os.path.join(file_path, 'test_config.json'))
|
|
|
|
|
|
def count_parameters(model):
|
|
r"""Count number of trainable parameters in a network"""
|
|
return sum(p.numel() for p in model.parameters() if p.requires_grad)
|
|
|
|
|
|
class TacotronTrainTest(unittest.TestCase):
|
|
@staticmethod
|
|
def test_train_step():
|
|
input_dummy = torch.randint(0, 24, (8, 128)).long().to(device)
|
|
input_lengths = torch.randint(100, 129, (8, )).long().to(device)
|
|
input_lengths[-1] = 128
|
|
mel_spec = torch.rand(8, 30, c.audio['num_mels']).to(device)
|
|
linear_spec = torch.rand(8, 30, c.audio['num_freq']).to(device)
|
|
mel_lengths = torch.randint(20, 30, (8, )).long().to(device)
|
|
stop_targets = torch.zeros(8, 30, 1).float().to(device)
|
|
speaker_ids = torch.randint(0, 5, (8, )).long().to(device)
|
|
|
|
for idx in mel_lengths:
|
|
stop_targets[:, int(idx.item()):, 0] = 1.0
|
|
|
|
stop_targets = stop_targets.view(input_dummy.shape[0],
|
|
stop_targets.size(1) // c.r, -1)
|
|
stop_targets = (stop_targets.sum(2) >
|
|
0.0).unsqueeze(2).float().squeeze()
|
|
|
|
criterion = L1LossMasked(seq_len_norm=False).to(device)
|
|
criterion_st = nn.BCEWithLogitsLoss().to(device)
|
|
model = Tacotron(
|
|
num_chars=32,
|
|
num_speakers=5,
|
|
postnet_output_dim=c.audio['num_freq'],
|
|
decoder_output_dim=c.audio['num_mels'],
|
|
r=c.r,
|
|
memory_size=c.memory_size
|
|
).to(device) #FIXME: missing num_speakers parameter to Tacotron ctor
|
|
model.train()
|
|
print(" > Num parameters for Tacotron model:%s" %
|
|
(count_parameters(model)))
|
|
model_ref = copy.deepcopy(model)
|
|
count = 0
|
|
for param, param_ref in zip(model.parameters(),
|
|
model_ref.parameters()):
|
|
assert (param - param_ref).sum() == 0, param
|
|
count += 1
|
|
optimizer = optim.Adam(model.parameters(), lr=c.lr)
|
|
for _ in range(5):
|
|
mel_out, linear_out, align, stop_tokens = model.forward(
|
|
input_dummy, input_lengths, mel_spec, speaker_ids)
|
|
optimizer.zero_grad()
|
|
loss = criterion(mel_out, mel_spec, mel_lengths)
|
|
stop_loss = criterion_st(stop_tokens, stop_targets)
|
|
loss = loss + criterion(linear_out, linear_spec,
|
|
mel_lengths) + stop_loss
|
|
loss.backward()
|
|
optimizer.step()
|
|
# check parameter changes
|
|
count = 0
|
|
for param, param_ref in zip(model.parameters(),
|
|
model_ref.parameters()):
|
|
# ignore pre-higway layer since it works conditional
|
|
# if count not in [145, 59]:
|
|
assert (param != param_ref).any(
|
|
), "param {} with shape {} not updated!! \n{}\n{}".format(
|
|
count, param.shape, param, param_ref)
|
|
count += 1
|
|
|
|
|
|
class TacotronGSTTrainTest(unittest.TestCase):
|
|
@staticmethod
|
|
def test_train_step():
|
|
input_dummy = torch.randint(0, 24, (8, 128)).long().to(device)
|
|
input_lengths = torch.randint(100, 129, (8, )).long().to(device)
|
|
input_lengths[-1] = 128
|
|
mel_spec = torch.rand(8, 120, c.audio['num_mels']).to(device)
|
|
linear_spec = torch.rand(8, 120, c.audio['num_freq']).to(device)
|
|
mel_lengths = torch.randint(20, 120, (8, )).long().to(device)
|
|
stop_targets = torch.zeros(8, 120, 1).float().to(device)
|
|
speaker_ids = torch.randint(0, 5, (8, )).long().to(device)
|
|
|
|
for idx in mel_lengths:
|
|
stop_targets[:, int(idx.item()):, 0] = 1.0
|
|
|
|
stop_targets = stop_targets.view(input_dummy.shape[0],
|
|
stop_targets.size(1) // c.r, -1)
|
|
stop_targets = (stop_targets.sum(2) >
|
|
0.0).unsqueeze(2).float().squeeze()
|
|
|
|
criterion = L1LossMasked(seq_len_norm=False).to(device)
|
|
criterion_st = nn.BCEWithLogitsLoss().to(device)
|
|
model = Tacotron(
|
|
num_chars=32,
|
|
num_speakers=5,
|
|
gst=True,
|
|
postnet_output_dim=c.audio['num_freq'],
|
|
decoder_output_dim=c.audio['num_mels'],
|
|
r=c.r,
|
|
memory_size=c.memory_size
|
|
).to(device) #FIXME: missing num_speakers parameter to Tacotron ctor
|
|
model.train()
|
|
print(model)
|
|
print(" > Num parameters for Tacotron GST model:%s" %
|
|
(count_parameters(model)))
|
|
model_ref = copy.deepcopy(model)
|
|
count = 0
|
|
for param, param_ref in zip(model.parameters(),
|
|
model_ref.parameters()):
|
|
assert (param - param_ref).sum() == 0, param
|
|
count += 1
|
|
optimizer = optim.Adam(model.parameters(), lr=c.lr)
|
|
for _ in range(10):
|
|
mel_out, linear_out, align, stop_tokens = model.forward(
|
|
input_dummy, input_lengths, mel_spec, speaker_ids)
|
|
optimizer.zero_grad()
|
|
loss = criterion(mel_out, mel_spec, mel_lengths)
|
|
stop_loss = criterion_st(stop_tokens, stop_targets)
|
|
loss = loss + criterion(linear_out, linear_spec,
|
|
mel_lengths) + stop_loss
|
|
loss.backward()
|
|
optimizer.step()
|
|
# check parameter changes
|
|
count = 0
|
|
for param, param_ref in zip(model.parameters(),
|
|
model_ref.parameters()):
|
|
# ignore pre-higway layer since it works conditional
|
|
assert (param != param_ref).any(
|
|
), "param {} with shape {} not updated!! \n{}\n{}".format(
|
|
count, param.shape, param, param_ref)
|
|
count += 1
|