TTS/notebooks/PlotUmapLibriTTS.ipynb

323 lines
9.3 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Overview\n",
"\n",
"This notebook can be used with both a single or multi- speaker corpus and allows the interactive plotting of speaker embeddings linked to underlying audio (see instructions in the repo's speaker_embedding directory)\n",
"\n",
"Depending on the directory structure used for your corpus, you may need to adjust handling of **speaker_to_utter** and **locations**."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import glob\n",
"import numpy as np\n",
"import umap\n",
"\n",
"from TTS.utils.audio import AudioProcessor\n",
"from TTS.config import load_config\n",
"\n",
"from bokeh.io import output_notebook, show\n",
"from bokeh.plotting import figure\n",
"from bokeh.models import HoverTool, ColumnDataSource, BoxZoomTool, ResetTool, OpenURL, TapTool\n",
"from bokeh.transform import factor_cmap\n",
"from bokeh.palettes import Category10"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"For larger sets of speakers, you can use **Category20**, but you need to change it in the **pal** variable too\n",
"\n",
"List of Bokeh palettes here: http://docs.bokeh.org/en/1.4.0/docs/reference/palettes.html\n",
"\n",
"**NB:** if you have problems with other palettes, first see https://stackoverflow.com/questions/48333820/why-do-some-bokeh-palettes-raise-a-valueerror-when-used-in-factor-cmap"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"output_notebook()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You should also adjust all the path constants to point at the relevant locations for you locally"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"MODEL_RUN_PATH = \"/media/erogol/data_ssd/Models/libri_tts/speaker_encoder/libritts_360-half-October-31-2019_04+54PM-19d2f5f/\"\n",
"MODEL_PATH = MODEL_RUN_PATH + \"best_model.pth\"\n",
"CONFIG_PATH = MODEL_RUN_PATH + \"config.json\"\n",
"\n",
"# My single speaker locations\n",
"#EMBED_PATH = \"/home/neil/main/Projects/TTS3/embeddings/neil14/\"\n",
"#AUDIO_PATH = \"/home/neil/data/Projects/NeilTTS/neil14/wavs/\"\n",
"\n",
"# My multi speaker locations\n",
"EMBED_PATH = \"/home/erogol/Data/Libri-TTS/train-clean-360-embed_128/\"\n",
"AUDIO_PATH = \"/home/erogol/Data/Libri-TTS/train-clean-360/\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!ls -1 $MODEL_RUN_PATH"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"CONFIG = load_config(CONFIG_PATH)\n",
"ap = AudioProcessor(**CONFIG['audio'])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Bring in the embeddings created by **compute_embeddings.py**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"embed_files = glob.glob(EMBED_PATH+\"/**/*.npy\", recursive=True)\n",
"print(f'Embeddings found: {len(embed_files)}')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Check that we did indeed find an embedding"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"embed_files[0]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Process the speakers\n",
"\n",
"Assumes count of **speaker_paths** corresponds to number of speakers (so a corpus in just one directory would be treated like a single speaker and the multiple directories of LibriTTS are treated as distinct speakers)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"speaker_paths = list(set([os.path.dirname(os.path.dirname(embed_file)) for embed_file in embed_files]))\n",
"speaker_to_utter = {}\n",
"for embed_file in embed_files:\n",
" speaker_path = os.path.dirname(os.path.dirname(embed_file))\n",
" try:\n",
" speaker_to_utter[speaker_path].append(embed_file)\n",
" except:\n",
" speaker_to_utter[speaker_path]=[embed_file]\n",
"print(f'Speaker count: {len(speaker_paths)}')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Set up the embeddings\n",
"\n",
"Adjust the number of speakers to select and the number of utterances from each speaker and they will be randomly sampled from the corpus"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"embeds = []\n",
"labels = []\n",
"locations = []\n",
"\n",
"# single speaker \n",
"#num_speakers = 1\n",
"#num_utters = 1000\n",
"\n",
"# multi speaker\n",
"num_speakers = 10\n",
"num_utters = 20\n",
"\n",
"\n",
"speaker_idxs = np.random.choice(range(len(speaker_paths)), num_speakers, replace=False )\n",
"\n",
"for speaker_num, speaker_idx in enumerate(speaker_idxs):\n",
" speaker_path = speaker_paths[speaker_idx]\n",
" speakers_utter = speaker_to_utter[speaker_path]\n",
" utter_idxs = np.random.randint(0, len(speakers_utter) , num_utters)\n",
" for utter_idx in utter_idxs:\n",
" embed_path = speaker_to_utter[speaker_path][utter_idx]\n",
" embed = np.load(embed_path)\n",
" embeds.append(embed)\n",
" labels.append(str(speaker_num))\n",
" locations.append(embed_path.replace(EMBED_PATH, '').replace('.npy','.wav'))\n",
"embeds = np.concatenate(embeds)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Load embeddings with UMAP"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model = umap.UMAP()\n",
"projection = model.fit_transform(embeds)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Interactively charting the data in Bokeh\n",
"\n",
"Set up various details for Bokeh to plot the data\n",
"\n",
"You can use the regular Bokeh [tools](http://docs.bokeh.org/en/1.4.0/docs/user_guide/tools.html?highlight=tools) to explore the data, with reset setting it back to normal\n",
"\n",
"Once you have started the local server (see cell below) you can then click on plotted points which will open a tab to play the audio for that point, enabling easy exploration of your corpus\n",
"\n",
"File location in the tooltip is given relative to **AUDIO_PATH**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"source_wav_stems = ColumnDataSource(\n",
" data=dict(\n",
" x = projection.T[0].tolist(),\n",
" y = projection.T[1].tolist(),\n",
" desc=locations,\n",
" label=labels\n",
" )\n",
" )\n",
"\n",
"hover = HoverTool(\n",
" tooltips=[\n",
" (\"file\", \"@desc\"),\n",
" (\"speaker\", \"@label\"),\n",
" ]\n",
" )\n",
"\n",
"# optionally consider adding these to the tooltips if you want additional detail\n",
"# for the coordinates: (\"(x,y)\", \"($x, $y)\"),\n",
"# for the index of the embedding / wav file: (\"index\", \"$index\"),\n",
"\n",
"factors = list(set(labels))\n",
"pal_size = max(len(factors), 3)\n",
"pal = Category10[pal_size]\n",
"\n",
"p = figure(plot_width=600, plot_height=400, tools=[hover,BoxZoomTool(), ResetTool(), TapTool()])\n",
"\n",
"\n",
"p.circle('x', 'y', source=source_wav_stems, color=factor_cmap('label', palette=pal, factors=factors),)\n",
"\n",
"url = \"http://localhost:8000/@desc\"\n",
"taptool = p.select(type=TapTool)\n",
"taptool.callback = OpenURL(url=url)\n",
"\n",
"show(p)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Local server to serve wav files from corpus\n",
"\n",
"This is required so that when you click on a data point the hyperlink associated with it will be served the file locally.\n",
"\n",
"There are other ways to serve this if you prefer and you can also run the commands manually on the command line\n",
"\n",
"The server will continue to run until stopped. To stop it simply interupt the kernel (ie square button or under Kernel menu)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%cd $AUDIO_PATH\n",
"%pwd\n",
"!python -m http.server"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.4"
}
},
"nbformat": 4,
"nbformat_minor": 4
}