import copy import os import unittest import torch from torch import optim from tests import get_tests_input_path from TTS.tts.configs import GlowTTSConfig from TTS.tts.layers.losses import GlowTTSLoss from TTS.tts.models.glow_tts import GlowTTS from TTS.utils.audio import AudioProcessor # pylint: disable=unused-variable torch.manual_seed(1) use_cuda = torch.cuda.is_available() device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") c = GlowTTSConfig() ap = AudioProcessor(**c.audio) WAV_FILE = os.path.join(get_tests_input_path(), "example_1.wav") def count_parameters(model): r"""Count number of trainable parameters in a network""" return sum(p.numel() for p in model.parameters() if p.requires_grad) class GlowTTSTrainTest(unittest.TestCase): @staticmethod def test_train_step(): input_dummy = torch.randint(0, 24, (8, 128)).long().to(device) input_lengths = torch.randint(100, 129, (8,)).long().to(device) input_lengths[-1] = 128 mel_spec = torch.rand(8, 30, c.audio["num_mels"]).to(device) mel_lengths = torch.randint(20, 30, (8,)).long().to(device) speaker_ids = torch.randint(0, 5, (8,)).long().to(device) criterion = GlowTTSLoss() # model to train config = GlowTTSConfig(num_chars=32) model = GlowTTS(config).to(device) # reference model to compare model weights model_ref = GlowTTS(config).to(device) model.train() print(" > Num parameters for GlowTTS model:%s" % (count_parameters(model))) # pass the state to ref model model_ref.load_state_dict(copy.deepcopy(model.state_dict())) count = 0 for param, param_ref in zip(model.parameters(), model_ref.parameters()): assert (param - param_ref).sum() == 0, param count += 1 optimizer = optim.Adam(model.parameters(), lr=0.001) for _ in range(5): optimizer.zero_grad() outputs = model.forward(input_dummy, input_lengths, mel_spec, mel_lengths, None) loss_dict = criterion( outputs["model_outputs"], outputs["y_mean"], outputs["y_log_scale"], outputs["logdet"], mel_lengths, outputs["durations_log"], outputs["total_durations_log"], input_lengths, ) loss = loss_dict["loss"] loss.backward() optimizer.step() # check parameter changes count = 0 for param, param_ref in zip(model.parameters(), model_ref.parameters()): assert (param != param_ref).any(), "param {} with shape {} not updated!! \n{}\n{}".format( count, param.shape, param, param_ref ) count += 1 class GlowTTSInferenceTest(unittest.TestCase): @staticmethod def test_inference(): input_dummy = torch.randint(0, 24, (8, 128)).long().to(device) input_lengths = torch.randint(100, 129, (8,)).long().to(device) input_lengths[-1] = 128 mel_spec = torch.rand(8, 30, c.audio["num_mels"]).to(device) mel_lengths = torch.randint(20, 30, (8,)).long().to(device) speaker_ids = torch.randint(0, 5, (8,)).long().to(device) # create model config = GlowTTSConfig(num_chars=32) model = GlowTTS(config).to(device) model.eval() print(" > Num parameters for GlowTTS model:%s" % (count_parameters(model))) # inference encoder and decoder with MAS y = model.inference_with_MAS(input_dummy, input_lengths, mel_spec, mel_lengths) y2 = model.decoder_inference(mel_spec, mel_lengths) assert ( y2["model_outputs"].shape == y["model_outputs"].shape ), "Difference between the shapes of the glowTTS inference with MAS ({}) and the inference using only the decoder ({}) !!".format( y["model_outputs"].shape, y2["model_outputs"].shape )