import copy import os import unittest import torch from tests import get_tests_input_path from torch import optim from TTS.tts.layers.losses import GlowTTSLoss from TTS.tts.models.glow_tts import GlowTTS from TTS.utils.io import load_config from TTS.utils.audio import AudioProcessor #pylint: disable=unused-variable torch.manual_seed(1) use_cuda = torch.cuda.is_available() device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") c = load_config(os.path.join(get_tests_input_path(), 'test_config.json')) ap = AudioProcessor(**c.audio) WAV_FILE = os.path.join(get_tests_input_path(), "example_1.wav") def count_parameters(model): r"""Count number of trainable parameters in a network""" return sum(p.numel() for p in model.parameters() if p.requires_grad) class GlowTTSTrainTest(unittest.TestCase): @staticmethod def test_train_step(): input_dummy = torch.randint(0, 24, (8, 128)).long().to(device) input_lengths = torch.randint(100, 129, (8, )).long().to(device) input_lengths[-1] = 128 mel_spec = torch.rand(8, c.audio['num_mels'], 30).to(device) mel_lengths = torch.randint(20, 30, (8, )).long().to(device) speaker_ids = torch.randint(0, 5, (8, )).long().to(device) criterion = GlowTTSLoss() # model to train model = GlowTTS( num_chars=32, hidden_channels_enc=48, hidden_channels_dec=48, hidden_channels_dp=32, out_channels=80, encoder_type='rel_pos_transformer', encoder_params={ 'kernel_size': 3, 'dropout_p': 0.1, 'num_layers': 6, 'num_heads': 2, 'hidden_channels_ffn': 16, # 4 times the hidden_channels 'input_length': None }, use_encoder_prenet=True, num_flow_blocks_dec=12, kernel_size_dec=5, dilation_rate=1, num_block_layers=4, dropout_p_dec=0., num_speakers=0, c_in_channels=0, num_splits=4, num_squeeze=1, sigmoid_scale=False, mean_only=False).to(device) # reference model to compare model weights model_ref = GlowTTS( num_chars=32, hidden_channels_enc=48, hidden_channels_dec=48, hidden_channels_dp=32, out_channels=80, encoder_type='rel_pos_transformer', encoder_params={ 'kernel_size': 3, 'dropout_p': 0.1, 'num_layers': 6, 'num_heads': 2, 'hidden_channels_ffn': 16, # 4 times the hidden_channels 'input_length': None }, use_encoder_prenet=True, num_flow_blocks_dec=12, kernel_size_dec=5, dilation_rate=1, num_block_layers=4, dropout_p_dec=0., num_speakers=0, c_in_channels=0, num_splits=4, num_squeeze=1, sigmoid_scale=False, mean_only=False).to(device) model.train() print(" > Num parameters for GlowTTS model:%s" % (count_parameters(model))) # pass the state to ref model model_ref.load_state_dict(copy.deepcopy(model.state_dict())) count = 0 for param, param_ref in zip(model.parameters(), model_ref.parameters()): assert (param - param_ref).sum() == 0, param count += 1 optimizer = optim.Adam(model.parameters(), lr=0.001) for _ in range(5): optimizer.zero_grad() z, logdet, y_mean, y_log_scale, alignments, o_dur_log, o_total_dur = model.forward( input_dummy, input_lengths, mel_spec, mel_lengths, None) loss_dict = criterion(z, y_mean, y_log_scale, logdet, mel_lengths, o_dur_log, o_total_dur, input_lengths) loss = loss_dict['loss'] loss.backward() optimizer.step() # check parameter changes count = 0 for param, param_ref in zip(model.parameters(), model_ref.parameters()): assert (param != param_ref).any( ), "param {} with shape {} not updated!! \n{}\n{}".format( count, param.shape, param, param_ref) count += 1