{ "run_name": "mozilla-no-loc-fattn-stopnet-sigmoid-loss_masking", "run_description": "using forward attention, with original prenet, loss masking,separate stopnet, sigmoid. Compare this with 4817. Pytorch DPP", "audio":{ // Audio processing parameters "num_mels": 80, // size of the mel spec frame. "num_freq": 1025, // number of stft frequency levels. Size of the linear spectogram frame. "sample_rate": 22050, // DATASET-RELATED: wav sample-rate. If different than the original data, it is resampled. "frame_length_ms": 50, // stft window length in ms. "frame_shift_ms": 12.5, // stft window hop-lengh in ms. "preemphasis": 0.98, // pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis. "min_level_db": -100, // normalization range "ref_level_db": 20, // reference level db, theoretically 20db is the sound of air. "power": 1.5, // value to sharpen wav signals after GL algorithm. "griffin_lim_iters": 60,// #griffin-lim iterations. 30-60 is a good range. Larger the value, slower the generation. // Normalization parameters "signal_norm": true, // normalize the spec values in range [0, 1] "symmetric_norm": false, // move normalization to range [-1, 1] "max_norm": 1, // scale normalization to range [-max_norm, max_norm] or [0, max_norm] "clip_norm": true, // clip normalized values into the range. "mel_fmin": 0.0, // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!! "mel_fmax": 8000.0, // maximum freq level for mel-spec. Tune for dataset!! "do_trim_silence": true // enable trimming of slience of audio as you load it. LJspeech (false), TWEB (false), Nancy (true) }, "distributed":{ "backend": "nccl", "url": "tcp:\/\/localhost:54321" }, "reinit_layers": [], "model": "Tacotron2", // one of the model in models/ "grad_clip": 1, // upper limit for gradients for clipping. "epochs": 1000, // total number of epochs to train. "lr": 0.0001, // Initial learning rate. If Noam decay is active, maximum learning rate. "lr_decay": false, // if true, Noam learning rate decaying is applied through training. "warmup_steps": 4000, // Noam decay steps to increase the learning rate from 0 to "lr" "memory_size": 5, // ONLY TACOTRON - memory queue size used to queue network predictions to feed autoregressive connection. Useful if r < 5. "attention_norm": "sigmoid", // softmax or sigmoid. Suggested to use softmax for Tacotron2 and sigmoid for Tacotron. "prenet_type": "original", // ONLY TACOTRON2 - "original" or "bn". "prenet_dropout": true, // ONLY TACOTRON2 - enable/disable dropout at prenet. "use_forward_attn": true, // ONLY TACOTRON2 - if it uses forward attention. In general, it aligns faster. "forward_attn_mask": false, // Apply forward attention mask af inference to prevent bad modes. Try it if your model does not align well. "transition_agent": false, // ONLY TACOTRON2 - enable/disable transition agent of forward attention. "location_attn": false, // ONLY TACOTRON2 - enable_disable location sensitive attention. It is enabled for TACOTRON by default. "loss_masking": true, // enable / disable loss masking against the sequence padding. "enable_eos_bos_chars": false, // enable/disable beginning of sentence and end of sentence chars. "stopnet": true, // Train stopnet predicting the end of synthesis. "separate_stopnet": true, // Train stopnet seperately if 'stopnet==true'. It prevents stopnet loss to influence the rest of the model. It causes a better model, but it trains SLOWER. "tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging. "windowing": false, // Enables attention windowing. Used only in eval mode. "forward_attn_masking": false, // Enable forward attention masking which improves attention stability. Use it if network does not work as you like when it is off. "batch_size": 32, // Batch size for training. Lower values than 32 might cause hard to learn attention. "eval_batch_size":16, "r": 1, // Number of frames to predict for step. "wd": 0.000001, // Weight decay weight. "checkpoint": true, // If true, it saves checkpoints per "save_step" "save_step": 1000, // Number of training steps expected to save traning stats and checkpoints. "print_step": 10, // Number of steps to log traning on console. "batch_group_size": 0, //Number of batches to shuffle after bucketing. "run_eval": true, "test_delay_epochs": 5, //Until attention is aligned, testing only wastes computation time. "test_sentences_file": null, // set a file to load sentences to be used for testing. If it is null then we use default english sentences. "data_path": "/media/erogol/data_ssd/Data/Mozilla/", // DATASET-RELATED: can overwritten from command argument "meta_file_train": "metadata_train.txt", // DATASET-RELATED: metafile for training dataloader. "meta_file_val": "metadata_val.txt", // DATASET-RELATED: metafile for evaluation dataloader. "dataset": "mozilla", // DATASET-RELATED: one of TTS.dataset.preprocessors depending on your target dataset. Use "tts_cache" for pre-computed dataset by extract_features.py "min_seq_len": 0, // DATASET-RELATED: minimum text length to use in training "max_seq_len": 150, // DATASET-RELATED: maximum text length "output_path": "../keep/", // DATASET-RELATED: output path for all training outputs. "num_loader_workers": 4, // number of training data loader processes. Don't set it too big. 4-8 are good values. "num_val_loader_workers": 4, // number of evaluation data loader processes. "phoneme_cache_path": "mozilla_us_phonemes", // phoneme computation is slow, therefore, it caches results in the given folder. "use_phonemes": true, // use phonemes instead of raw characters. It is suggested for better pronounciation. "phoneme_language": "en-us", // depending on your target language, pick one from https://github.com/bootphon/phonemizer#languages "text_cleaner": "phoneme_cleaners" }