# coding: utf-8 import torch from torch import nn from math import sqrt from layers.tacotron import Prenet, Encoder, Decoder, PostCBHG class Tacotron(nn.Module): def __init__(self, num_chars, embedding_dim=256, linear_dim=1025, mel_dim=80, r=5, padding_idx=None, memory_size=5, attn_windowing=False): super(Tacotron, self).__init__() self.r = r self.mel_dim = mel_dim self.linear_dim = linear_dim self.embedding = nn.Embedding( num_chars, embedding_dim, padding_idx=padding_idx) self.embedding.weight.data.normal_(0, 0.3) self.encoder = Encoder(embedding_dim) self.decoder = Decoder(256, mel_dim, r, memory_size, attn_windowing) self.postnet = PostCBHG(mel_dim) self.last_linear = nn.Sequential( nn.Linear(self.postnet.cbhg.gru_features * 2, linear_dim), nn.Sigmoid()) def forward(self, characters, mel_specs=None, mask=None): B = characters.size(0) inputs = self.embedding(characters) # batch x time x dim encoder_outputs = self.encoder(inputs) # batch x time x dim*r mel_outputs, alignments, stop_tokens = self.decoder( encoder_outputs, mel_specs, mask) # Reshape # batch x time x dim mel_outputs = mel_outputs.view(B, -1, self.mel_dim) linear_outputs = self.postnet(mel_outputs) linear_outputs = self.last_linear(linear_outputs) return mel_outputs, linear_outputs, alignments, stop_tokens