import glob import os import shutil from tests import get_device_id, get_tests_output_path, run_cli from TTS.config.shared_configs import BaseAudioConfig from TTS.speaker_encoder.speaker_encoder_config import SpeakerEncoderConfig config_path = os.path.join(get_tests_output_path(), "test_model_config.json") output_path = os.path.join(get_tests_output_path(), "train_outputs") config = SpeakerEncoderConfig( batch_size=4, num_speakers_in_batch=1, num_utters_per_speaker=10, num_loader_workers=0, max_train_step=2, print_step=1, save_step=1, print_eval=True, audio=BaseAudioConfig(num_mels=80), ) config.audio.do_trim_silence = True config.audio.trim_db = 60 config.save_json(config_path) # train the model for one epoch command_train = ( f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_encoder.py --config_path {config_path} " f"--coqpit.output_path {output_path} " "--coqpit.datasets.0.name ljspeech " "--coqpit.datasets.0.meta_file_train metadata.csv " "--coqpit.datasets.0.meta_file_val metadata.csv " "--coqpit.datasets.0.path tests/data/ljspeech " ) run_cli(command_train) # Find latest folder continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime) # restore the model and continue training for one more epoch command_train = ( f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_encoder.py --continue_path {continue_path} " ) run_cli(command_train) shutil.rmtree(continue_path) # test resnet speaker encoder config.model_params['model_name'] = "resnet" config.save_json(config_path) # train the model for one epoch command_train = ( f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_encoder.py --config_path {config_path} " f"--coqpit.output_path {output_path} " "--coqpit.datasets.0.name ljspeech " "--coqpit.datasets.0.meta_file_train metadata.csv " "--coqpit.datasets.0.meta_file_val metadata.csv " "--coqpit.datasets.0.path tests/data/ljspeech " ) run_cli(command_train) # Find latest folder continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime) # restore the model and continue training for one more epoch command_train = ( f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_encoder.py --continue_path {continue_path} " ) run_cli(command_train) shutil.rmtree(continue_path)