import torch from torch.autograd import Variable from torch import nn from torch.nn import functional as F from .common_layers import Attention, Prenet, Linear class ConvBNBlock(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, nonlinear=None): super(ConvBNBlock, self).__init__() assert (kernel_size - 1) % 2 == 0 padding = (kernel_size - 1) // 2 conv1d = nn.Conv1d(in_channels, out_channels, kernel_size, padding=padding) norm = nn.BatchNorm1d(out_channels) dropout = nn.Dropout(p=0.5) if nonlinear == 'relu': self.net = nn.Sequential(conv1d, norm, nn.ReLU(), dropout) elif nonlinear == 'tanh': self.net = nn.Sequential(conv1d, norm, nn.Tanh(), dropout) else: self.net = nn.Sequential(conv1d, norm, dropout) def forward(self, x): output = self.net(x) return output class Postnet(nn.Module): def __init__(self, mel_dim, num_convs=5): super(Postnet, self).__init__() self.convolutions = nn.ModuleList() self.convolutions.append( ConvBNBlock(mel_dim, 512, kernel_size=5, nonlinear='tanh')) for _ in range(1, num_convs - 1): self.convolutions.append( ConvBNBlock(512, 512, kernel_size=5, nonlinear='tanh')) self.convolutions.append( ConvBNBlock(512, mel_dim, kernel_size=5, nonlinear=None)) def forward(self, x): for layer in self.convolutions: x = layer(x) return x class Encoder(nn.Module): def __init__(self, in_features=512): super(Encoder, self).__init__() convolutions = [] for _ in range(3): convolutions.append( ConvBNBlock(in_features, in_features, 5, 'relu')) self.convolutions = nn.Sequential(*convolutions) self.lstm = nn.LSTM(in_features, int(in_features / 2), num_layers=1, batch_first=True, bidirectional=True) self.rnn_state = None def forward(self, x, input_lengths): x = self.convolutions(x) x = x.transpose(1, 2) input_lengths = input_lengths.cpu().numpy() x = nn.utils.rnn.pack_padded_sequence(x, input_lengths, batch_first=True) self.lstm.flatten_parameters() outputs, _ = self.lstm(x) outputs, _ = nn.utils.rnn.pad_packed_sequence( outputs, batch_first=True, ) return outputs def inference(self, x): x = self.convolutions(x) x = x.transpose(1, 2) self.lstm.flatten_parameters() outputs, _ = self.lstm(x) return outputs def inference_truncated(self, x): """ Preserve encoder state for continuous inference """ x = self.convolutions(x) x = x.transpose(1, 2) self.lstm.flatten_parameters() outputs, self.rnn_state = self.lstm(x, self.rnn_state) return outputs # adapted from https://github.com/NVIDIA/tacotron2/ class Decoder(nn.Module): # Pylint gets confused by PyTorch conventions here #pylint: disable=attribute-defined-outside-init def __init__(self, in_features, memory_dim, r, attn_win, attn_norm, prenet_type, prenet_dropout, forward_attn, trans_agent, forward_attn_mask, location_attn, separate_stopnet, speaker_embedding_dim): super(Decoder, self).__init__() self.memory_dim = memory_dim self.r_init = r self.r = r self.encoder_embedding_dim = in_features self.separate_stopnet = separate_stopnet self.query_dim = 1024 self.decoder_rnn_dim = 1024 self.prenet_dim = 256 self.max_decoder_steps = 1000 self.gate_threshold = 0.5 self.p_attention_dropout = 0.1 self.p_decoder_dropout = 0.1 # memory -> |Prenet| -> processed_memory prenet_dim = self.memory_dim self.prenet = Prenet( prenet_dim, prenet_type, prenet_dropout, out_features=[self.prenet_dim, self.prenet_dim], bias=False) self.attention_rnn = nn.LSTMCell(self.prenet_dim + in_features, self.query_dim) self.attention = Attention(query_dim=self.query_dim, embedding_dim=in_features, attention_dim=128, location_attention=location_attn, attention_location_n_filters=32, attention_location_kernel_size=31, windowing=attn_win, norm=attn_norm, forward_attn=forward_attn, trans_agent=trans_agent, forward_attn_mask=forward_attn_mask) self.decoder_rnn = nn.LSTMCell(self.query_dim + in_features, self.decoder_rnn_dim, 1) self.linear_projection = Linear(self.decoder_rnn_dim + in_features, self.memory_dim * self.r_init) self.stopnet = nn.Sequential( nn.Dropout(0.1), Linear(self.decoder_rnn_dim + self.memory_dim * self.r_init, 1, bias=True, init_gain='sigmoid')) self.memory_truncated = None def set_r(self, new_r): self.r = new_r def get_go_frame(self, inputs): B = inputs.size(0) memory = torch.zeros(1, device=inputs.device).repeat(B, self.memory_dim * self.r) return memory def _init_states(self, inputs, mask, keep_states=False): B = inputs.size(0) # T = inputs.size(1) if not keep_states: self.query = torch.zeros(1, device=inputs.device).repeat( B, self.query_dim) self.attention_rnn_cell_state = torch.zeros( 1, device=inputs.device).repeat(B, self.query_dim) self.decoder_hidden = torch.zeros(1, device=inputs.device).repeat( B, self.decoder_rnn_dim) self.decoder_cell = torch.zeros(1, device=inputs.device).repeat( B, self.decoder_rnn_dim) self.context = torch.zeros(1, device=inputs.device).repeat( B, self.encoder_embedding_dim) self.inputs = inputs self.processed_inputs = self.attention.inputs_layer(inputs) self.mask = mask def _reshape_memory(self, memory): """ Reshape the spectrograms for given 'r' """ # Grouping multiple frames if necessary if memory.size(-1) == self.memory_dim: memory = memory.view(memory.shape[0], memory.size(1) // self.r, -1) # Time first (T_decoder, B, memory_dim) memory = memory.transpose(0, 1) return memory def _parse_outputs(self, outputs, stop_tokens, alignments): alignments = torch.stack(alignments).transpose(0, 1) stop_tokens = torch.stack(stop_tokens).transpose(0, 1) outputs = torch.stack(outputs).transpose(0, 1).contiguous() outputs = outputs.view(outputs.size(0), -1, self.memory_dim) outputs = outputs.transpose(1, 2) return outputs, stop_tokens, alignments def _update_memory(self, memory): if len(memory.shape) == 2: return memory[:, self.memory_dim * (self.r - 1):] return memory[:, :, self.memory_dim * (self.r - 1):] def decode(self, memory): query_input = torch.cat((memory, self.context), -1) self.query, self.attention_rnn_cell_state = self.attention_rnn( query_input, (self.query, self.attention_rnn_cell_state)) self.query = F.dropout(self.query, self.p_attention_dropout, self.training) self.attention_rnn_cell_state = F.dropout( self.attention_rnn_cell_state, self.p_attention_dropout, self.training) self.context = self.attention(self.query, self.inputs, self.processed_inputs, self.mask) memory = torch.cat((self.query, self.context), -1) self.decoder_hidden, self.decoder_cell = self.decoder_rnn( memory, (self.decoder_hidden, self.decoder_cell)) self.decoder_hidden = F.dropout(self.decoder_hidden, self.p_decoder_dropout, self.training) self.decoder_cell = F.dropout(self.decoder_cell, self.p_decoder_dropout, self.training) decoder_hidden_context = torch.cat((self.decoder_hidden, self.context), dim=1) decoder_output = self.linear_projection(decoder_hidden_context) stopnet_input = torch.cat((self.decoder_hidden, decoder_output), dim=1) if self.separate_stopnet: stop_token = self.stopnet(stopnet_input.detach()) else: stop_token = self.stopnet(stopnet_input) decoder_output = decoder_output[:, :self.r * self.memory_dim] return decoder_output, self.attention.attention_weights, stop_token def forward(self, inputs, memories, mask, speaker_embeddings=None): memory = self.get_go_frame(inputs).unsqueeze(0) memories = self._reshape_memory(memories) memories = torch.cat((memory, memories), dim=0) memories = self._update_memory(memories) if speaker_embeddings is not None: memories = torch.cat([memories, speaker_embeddings], dim=-1) memories = self.prenet(memories) self._init_states(inputs, mask=mask) self.attention.init_states(inputs) outputs, stop_tokens, alignments = [], [], [] while len(outputs) < memories.size(0) - 1: memory = memories[len(outputs)] mel_output, attention_weights, stop_token = self.decode(memory) outputs += [mel_output.squeeze(1)] stop_tokens += [stop_token.squeeze(1)] alignments += [attention_weights] outputs, stop_tokens, alignments = self._parse_outputs( outputs, stop_tokens, alignments) return outputs, alignments, stop_tokens def inference(self, inputs, speaker_embeddings=None): memory = self.get_go_frame(inputs) memory = self._update_memory(memory) self._init_states(inputs, mask=None) self.attention.init_win_idx() self.attention.init_states(inputs) outputs, stop_tokens, alignments, t = [], [], [], 0 while True: memory = self.prenet(memory) if speaker_embeddings is not None: memory = torch.cat([memory, speaker_embeddings], dim=-1) mel_output, alignment, stop_token = self.decode(memory) stop_token = torch.sigmoid(stop_token.data) outputs += [mel_output.squeeze(1)] stop_tokens += [stop_token] alignments += [alignment] if stop_token > 0.7: break if len(outputs) == self.max_decoder_steps: print(" | > Decoder stopped with 'max_decoder_steps") break memory = self._update_memory(mel_output) t += 1 outputs, stop_tokens, alignments = self._parse_outputs( outputs, stop_tokens, alignments) return outputs, alignments, stop_tokens def inference_truncated(self, inputs): """ Preserve decoder states for continuous inference """ if self.memory_truncated is None: self.memory_truncated = self.get_go_frame(inputs) self._init_states(inputs, mask=None, keep_states=False) else: self._init_states(inputs, mask=None, keep_states=True) self.attention.init_win_idx() self.attention.init_states(inputs) outputs, stop_tokens, alignments, t = [], [], [], 0 stop_flags = [True, False, False] while True: memory = self.prenet(self.memory_truncated) mel_output, alignment, stop_token = self.decode(memory) stop_token = torch.sigmoid(stop_token.data) outputs += [mel_output.squeeze(1)] stop_tokens += [stop_token] alignments += [alignment] if stop_token > 0.7: break if len(outputs) == self.max_decoder_steps: print(" | > Decoder stopped with 'max_decoder_steps") break self.memory_truncated = mel_output t += 1 outputs, stop_tokens, alignments = self._parse_outputs( outputs, stop_tokens, alignments) return outputs, alignments, stop_tokens def inference_step(self, inputs, t, memory=None): """ For debug purposes """ if t == 0: memory = self.get_go_frame(inputs) self._init_states(inputs, mask=None) memory = self.prenet(memory) mel_output, stop_token, alignment = self.decode(memory) stop_token = torch.sigmoid(stop_token.data) memory = mel_output return mel_output, stop_token, alignment