import copy import torch from math import sqrt from torch import nn from TTS.layers.tacotron2 import Encoder, Decoder, Postnet from TTS.utils.generic_utils import sequence_mask # TODO: match function arguments with tacotron class Tacotron2(nn.Module): def __init__(self, num_chars, num_speakers, r, postnet_output_dim=80, decoder_output_dim=80, attn_type='original', attn_win=False, attn_norm="softmax", prenet_type="original", prenet_dropout=True, forward_attn=False, trans_agent=False, forward_attn_mask=False, location_attn=True, attn_K=5, separate_stopnet=True, bidirectional_decoder=False): super(Tacotron2, self).__init__() self.postnet_output_dim = postnet_output_dim self.decoder_output_dim = decoder_output_dim self.r = r self.bidirectional_decoder = bidirectional_decoder decoder_dim = 512 if num_speakers > 1 else 512 encoder_dim = 512 if num_speakers > 1 else 512 proj_speaker_dim = 80 if num_speakers > 1 else 0 # embedding layer self.embedding = nn.Embedding(num_chars, 512, padding_idx=0) std = sqrt(2.0 / (num_chars + 512)) val = sqrt(3.0) * std # uniform bounds for std self.embedding.weight.data.uniform_(-val, val) if num_speakers > 1: self.speaker_embedding = nn.Embedding(num_speakers, 512) self.speaker_embedding.weight.data.normal_(0, 0.3) self.speaker_embeddings = None self.speaker_embeddings_projected = None self.encoder = Encoder(encoder_dim) self.decoder = Decoder(decoder_dim, self.decoder_output_dim, r, attn_type, attn_win, attn_norm, prenet_type, prenet_dropout, forward_attn, trans_agent, forward_attn_mask, location_attn, attn_K, separate_stopnet, proj_speaker_dim) if self.bidirectional_decoder: self.decoder_backward = copy.deepcopy(self.decoder) self.postnet = Postnet(self.postnet_output_dim) def _init_states(self): self.speaker_embeddings = None self.speaker_embeddings_projected = None @staticmethod def shape_outputs(mel_outputs, mel_outputs_postnet, alignments): mel_outputs = mel_outputs.transpose(1, 2) mel_outputs_postnet = mel_outputs_postnet.transpose(1, 2) return mel_outputs, mel_outputs_postnet, alignments def forward(self, text, text_lengths, mel_specs=None, speaker_ids=None): self._init_states() # compute mask for padding mask = sequence_mask(text_lengths).to(text.device) embedded_inputs = self.embedding(text).transpose(1, 2) encoder_outputs = self.encoder(embedded_inputs, text_lengths) encoder_outputs = self._add_speaker_embedding(encoder_outputs, speaker_ids) decoder_outputs, alignments, stop_tokens = self.decoder( encoder_outputs, mel_specs, mask) postnet_outputs = self.postnet(decoder_outputs) postnet_outputs = decoder_outputs + postnet_outputs decoder_outputs, postnet_outputs, alignments = self.shape_outputs( decoder_outputs, postnet_outputs, alignments) if self.bidirectional_decoder: decoder_outputs_backward, alignments_backward = self._backward_inference(mel_specs, encoder_outputs, mask) return decoder_outputs, postnet_outputs, alignments, stop_tokens, decoder_outputs_backward, alignments_backward return decoder_outputs, postnet_outputs, alignments, stop_tokens @torch.no_grad() def inference(self, text, speaker_ids=None): embedded_inputs = self.embedding(text).transpose(1, 2) encoder_outputs = self.encoder.inference(embedded_inputs) encoder_outputs = self._add_speaker_embedding(encoder_outputs, speaker_ids) mel_outputs, alignments, stop_tokens = self.decoder.inference( encoder_outputs) mel_outputs_postnet = self.postnet(mel_outputs) mel_outputs_postnet = mel_outputs + mel_outputs_postnet mel_outputs, mel_outputs_postnet, alignments = self.shape_outputs( mel_outputs, mel_outputs_postnet, alignments) return mel_outputs, mel_outputs_postnet, alignments, stop_tokens def inference_truncated(self, text, speaker_ids=None): """ Preserve model states for continuous inference """ embedded_inputs = self.embedding(text).transpose(1, 2) encoder_outputs = self.encoder.inference_truncated(embedded_inputs) encoder_outputs = self._add_speaker_embedding(encoder_outputs, speaker_ids) mel_outputs, alignments, stop_tokens = self.decoder.inference_truncated( encoder_outputs) mel_outputs_postnet = self.postnet(mel_outputs) mel_outputs_postnet = mel_outputs + mel_outputs_postnet mel_outputs, mel_outputs_postnet, alignments = self.shape_outputs( mel_outputs, mel_outputs_postnet, alignments) return mel_outputs, mel_outputs_postnet, alignments, stop_tokens def _backward_inference(self, mel_specs, encoder_outputs, mask): decoder_outputs_b, alignments_b, _ = self.decoder_backward( encoder_outputs, torch.flip(mel_specs, dims=(1,)), mask, self.speaker_embeddings_projected) decoder_outputs_b = decoder_outputs_b.transpose(1, 2) return decoder_outputs_b, alignments_b def _add_speaker_embedding(self, encoder_outputs, speaker_ids): if hasattr(self, "speaker_embedding") and speaker_ids is None: raise RuntimeError(" [!] Model has speaker embedding layer but speaker_id is not provided") if hasattr(self, "speaker_embedding") and speaker_ids is not None: speaker_embeddings = self.speaker_embedding(speaker_ids) speaker_embeddings.unsqueeze_(1) speaker_embeddings = speaker_embeddings.expand(encoder_outputs.size(0), encoder_outputs.size(1), -1) encoder_outputs = encoder_outputs + speaker_embeddings return encoder_outputs