import os import unittest import numpy as np import torch from tests import get_tests_input_path from TTS.speaker_encoder.model import SpeakerEncoder from TTS.speaker_encoder.utils.generic_utils import save_checkpoint from TTS.tts.utils.speakers import SpeakerManager from TTS.utils.audio import AudioProcessor from TTS.utils.io import load_config encoder_config_path = os.path.join(get_tests_input_path(), "test_speaker_encoder_config.json") encoder_model_path = os.path.join(get_tests_input_path(), "checkpoint_0.pth.tar") sample_wav_path = os.path.join(get_tests_input_path(), "../data/ljspeech/wavs/LJ001-0001.wav") sample_wav_path2 = os.path.join(get_tests_input_path(), "../data/ljspeech/wavs/LJ001-0002.wav") x_vectors_file_path = os.path.join(get_tests_input_path(), "../data/dummy_speakers.json") class SpeakerManagerTest(unittest.TestCase): """Test SpeakerManager for loading embedding files and computing x_vectors from waveforms""" @staticmethod def test_speaker_embedding(): # load config config = load_config(encoder_config_path) config["audio"]["resample"] = True # create a dummy speaker encoder model = SpeakerEncoder(**config.model) save_checkpoint(model, None, None, get_tests_input_path(), 0, 0) # load audio processor and speaker encoder ap = AudioProcessor(**config.audio) manager = SpeakerManager(encoder_model_path=encoder_model_path, encoder_config_path=encoder_config_path) # load a sample audio and compute embedding waveform = ap.load_wav(sample_wav_path) mel = ap.melspectrogram(waveform) x_vector = manager.compute_x_vector(mel.T) assert x_vector.shape[1] == 256 # compute x_vector directly from an input file x_vector = manager.compute_x_vector_from_clip(sample_wav_path) x_vector2 = manager.compute_x_vector_from_clip(sample_wav_path) x_vector = torch.FloatTensor(x_vector) x_vector2 = torch.FloatTensor(x_vector2) assert x_vector.shape[0] == 256 assert (x_vector - x_vector2).sum() == 0.0 # compute x_vector from a list of wav files. x_vector3 = manager.compute_x_vector_from_clip([sample_wav_path, sample_wav_path2]) x_vector3 = torch.FloatTensor(x_vector3) assert x_vector3.shape[0] == 256 assert (x_vector - x_vector3).sum() != 0.0 # remove dummy model os.remove(encoder_model_path) @staticmethod def test_speakers_file_processing(): manager = SpeakerManager(x_vectors_file_path=x_vectors_file_path) print(manager.num_speakers) print(manager.x_vector_dim) print(manager.clip_ids) x_vector = manager.get_x_vector_by_clip(manager.clip_ids[0]) assert len(x_vector) == 256 x_vectors = manager.get_x_vectors_by_speaker(manager.speaker_ids[0]) assert len(x_vectors[0]) == 256 x_vector1 = manager.get_mean_x_vector(manager.speaker_ids[0], num_samples=2, randomize=True) assert len(x_vector1) == 256 x_vector2 = manager.get_mean_x_vector(manager.speaker_ids[0], num_samples=2, randomize=False) assert len(x_vector2) == 256 assert np.sum(np.array(x_vector1) - np.array(x_vector2)) != 0