import io import librosa import torch import numpy as np from TTS.utils.text import text_to_sequence from matplotlib import pylab as plt hop_length = 250 def create_speech(m, s, CONFIG, use_cuda, ap): text_cleaner = [CONFIG.text_cleaner] seq = np.array(text_to_sequence(s, text_cleaner)) # mel = np.zeros([seq.shape[0], CONFIG.num_mels, 1], dtype=np.float32) if use_cuda: chars_var = torch.autograd.Variable( torch.from_numpy(seq), volatile=True).unsqueeze(0).cuda() # mel_var = torch.autograd.Variable(torch.from_numpy(mel).type(torch.cuda.FloatTensor), volatile=True).cuda() else: chars_var = torch.autograd.Variable( torch.from_numpy(seq), volatile=True).unsqueeze(0) # mel_var = torch.autograd.Variable(torch.from_numpy(mel).type(torch.FloatTensor), volatile=True) mel_out, linear_out, alignments = m.forward(chars_var) linear_out = linear_out[0].data.cpu().numpy() alignment = alignments[0].cpu().data.numpy() spec = ap._denormalize(linear_out) wav = ap.inv_spectrogram(linear_out.T) wav = wav[:ap.find_endpoint(wav)] out = io.BytesIO() ap.save_wav(wav, out) return wav, alignment, spec def visualize(alignment, spectrogram, CONFIG): label_fontsize = 16 plt.figure(figsize=(16, 16)) plt.subplot(2, 1, 1) plt.imshow(alignment.T, aspect="auto", origin="lower", interpolation=None) plt.xlabel("Decoder timestamp", fontsize=label_fontsize) plt.ylabel("Encoder timestamp", fontsize=label_fontsize) plt.colorbar() plt.subplot(2, 1, 2) librosa.display.specshow(spectrogram.T, sr=CONFIG.sample_rate, hop_length=hop_length, x_axis="time", y_axis="linear") plt.xlabel("Time", fontsize=label_fontsize) plt.ylabel("Hz", fontsize=label_fontsize) plt.tight_layout() plt.colorbar()