import glob import os import shutil from tests import get_device_id, get_tests_output_path, run_cli from TTS.config.shared_configs import BaseAudioConfig from TTS.tts.configs.fast_pitch_config import FastPitchConfig config_path = os.path.join(get_tests_output_path(), "test_fast_pitch_config.json") output_path = os.path.join(get_tests_output_path(), "train_outputs") audio_config = BaseAudioConfig( sample_rate=22050, do_trim_silence=True, trim_db=60.0, signal_norm=False, mel_fmin=0.0, mel_fmax=8000, spec_gain=1.0, log_func="np.log", ref_level_db=20, preemphasis=0.0, ) config = FastPitchConfig( audio=audio_config, batch_size=8, eval_batch_size=8, num_loader_workers=0, num_eval_loader_workers=0, text_cleaner="english_cleaners", use_phonemes=True, phoneme_language="en-us", phoneme_cache_path="tests/data/ljspeech/phoneme_cache/", f0_cache_path="tests/data/ljspeech/f0_cache/", run_eval=True, test_delay_epochs=-1, epochs=1, print_step=1, print_eval=True, use_speaker_embedding=True, test_sentences=[ "Be a voice, not an echo.", ], ) config.audio.do_trim_silence = True config.audio.trim_db = 60 config.save_json(config_path) # train the model for one epoch command_train = ( f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --config_path {config_path} " f"--coqpit.output_path {output_path} " "--coqpit.datasets.0.name ljspeech_test " "--coqpit.datasets.0.meta_file_train metadata.csv " "--coqpit.datasets.0.meta_file_val metadata.csv " "--coqpit.datasets.0.path tests/data/ljspeech " "--coqpit.datasets.0.meta_file_attn_mask tests/data/ljspeech/metadata_attn_mask.txt " "--coqpit.test_delay_epochs 0" ) run_cli(command_train) # Find latest folder continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime) # restore the model and continue training for one more epoch command_train = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --continue_path {continue_path} " run_cli(command_train) shutil.rmtree(continue_path)