import os import json import re import torch import datetime class AttrDict(dict): def __init__(self, *args, **kwargs): super(AttrDict, self).__init__(*args, **kwargs) self.__dict__ = self def load_config(config_path): config = AttrDict() with open(config_path, "r") as f: input_str = f.read() input_str = re.sub(r'\\\n', '', input_str) input_str = re.sub(r'//.*\n', '\n', input_str) data = json.loads(input_str) config.update(data) return config def copy_config_file(config_file, out_path, new_fields): config_lines = open(config_file, "r").readlines() # add extra information fields for key, value in new_fields.items(): if isinstance(value, str): new_line = '"{}":"{}",\n'.format(key, value) else: new_line = '"{}":{},\n'.format(key, value) config_lines.insert(1, new_line) config_out_file = open(out_path, "w") config_out_file.writelines(config_lines) config_out_file.close() def load_checkpoint(model, checkpoint_path, use_cuda=False): state = torch.load(checkpoint_path, map_location=torch.device('cpu')) model.load_state_dict(state['model']) if use_cuda: model.cuda() # set model stepsize if 'r' in state.keys(): model.decoder.set_r(state['r']) return model, state def save_model(model, optimizer, current_step, epoch, r, output_path, **kwargs): new_state_dict = model.state_dict() state = { 'model': new_state_dict, 'optimizer': optimizer.state_dict() if optimizer is not None else None, 'step': current_step, 'epoch': epoch, 'date': datetime.date.today().strftime("%B %d, %Y"), 'r': r } state.update(kwargs) torch.save(state, output_path) def save_checkpoint(model, optimizer, current_step, epoch, r, output_folder, **kwargs): file_name = 'checkpoint_{}.pth.tar'.format(current_step) checkpoint_path = os.path.join(output_folder, file_name) print(" > CHECKPOINT : {}".format(checkpoint_path)) save_model(model, optimizer, current_step, epoch, r, checkpoint_path, **kwargs) def save_best_model(target_loss, best_loss, model, optimizer, current_step, epoch, r, output_folder, **kwargs): if target_loss < best_loss: file_name = 'best_model.pth.tar' checkpoint_path = os.path.join(output_folder, file_name) print(" > BEST MODEL : {}".format(checkpoint_path)) save_model(model, optimizer, current_step, epoch, r, checkpoint_path, model_loss=target_loss, **kwargs) best_loss = target_loss return best_loss