{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "name": "DDC-TTS_and_MultiBand-MelGAN_TF_Example.ipynb", "provenance": [], "collapsed_sections": [], "toc_visible": true }, "kernelspec": { "name": "python3", "display_name": "Python 3" } }, "cells": [ { "cell_type": "markdown", "metadata": { "id": "6LWsNd3_M3MP", "colab_type": "text" }, "source": [ "# Mozilla TTS on CPU Real-Time Speech Synthesis with Tensorflow" ] }, { "cell_type": "markdown", "metadata": { "id": "FAqrSIWgLyP0", "colab_type": "text" }, "source": [ "**These models are converted from released [PyTorch models](https://colab.research.google.com/drive/1u_16ZzHjKYFn1HNVuA4Qf_i2MMFB9olY?usp=sharing) using our TF utilities provided in Mozilla TTS.**\n", "\n", "These TF models support TF 2.2 and for different versions you might need to\n", "regenerate them. \n", "\n", "We use Tacotron2 and MultiBand-Melgan models and LJSpeech dataset.\n", "\n", "Tacotron2 is trained using [Double Decoder Consistency](https://erogol.com/solving-attention-problems-of-tts-models-with-double-decoder-consistency/) (DDC) only for 130K steps (3 days) with a single GPU.\n", "\n", "MultiBand-Melgan is trained 1.45M steps with real spectrograms.\n", "\n", "Note that both model performances can be improved with more training.\n" ] }, { "cell_type": "markdown", "metadata": { "id": "Ku-dA4DKoeXk", "colab_type": "text" }, "source": [ "### Download Models" ] }, { "cell_type": "code", "metadata": { "id": "jGIgnWhGsxU1", "colab_type": "code", "colab": { "base_uri": "https://localhost:8080/", "height": 162 }, "outputId": "08b0dddd-4edf-48c9-e8e5-a419b36a5c3d", "tags": [] }, "source": [ "!gdown --id 1p7OSEEW_Z7ORxNgfZwhMy7IiLE1s0aH7 -O data/tts_model.pkl\n", "!gdown --id 18CQ6G6tBEOfvCHlPqP8EBI4xWbrr9dBc -O data/config.json" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "4dnpE0-kvTsu", "colab_type": "code", "colab": { "base_uri": "https://localhost:8080/", "height": 235 }, "outputId": "2fe836eb-c7e7-4f1e-9352-0142126bb19f", "tags": [] }, "source": [ "!gdown --id 1rHmj7CqD3Sfa716Y3ub_vpIBrQg_b1yF -O data/vocoder_model.pkl\n", "!gdown --id 1Rd0R_nRCrbjEdpOwq6XwZAktvugiBvmu -O data/config_vocoder.json\n", "!gdown --id 11oY3Tv0kQtxK_JPgxrfesa99maVXHNxU -O data/scale_stats.npy" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "Zlgi8fPdpRF0", "colab_type": "text" }, "source": [ "### Define TTS function" ] }, { "cell_type": "code", "metadata": { "id": "f-Yc42nQZG5A", "colab_type": "code", "colab": {} }, "source": [ "def tts(model, text, CONFIG, p):\n", " t_1 = time.time()\n", " waveform, alignment, mel_spec, mel_postnet_spec, stop_tokens, inputs = synthesis(model, text, CONFIG, use_cuda, ap, speaker_id, style_wav=None,\n", " truncated=False, enable_eos_bos_chars=CONFIG.enable_eos_bos_chars,\n", " backend='tf')\n", " waveform = vocoder_model.inference(torch.FloatTensor(mel_postnet_spec.T).unsqueeze(0))\n", " waveform = waveform.numpy()[0, 0]\n", " rtf = (time.time() - t_1) / (len(waveform) / ap.sample_rate)\n", " tps = (time.time() - t_1) / len(waveform)\n", " print(waveform.shape)\n", " print(\" > Run-time: {}\".format(time.time() - t_1))\n", " print(\" > Real-time factor: {}\".format(rtf))\n", " print(\" > Time per step: {}\".format(tps))\n", " IPython.display.display(IPython.display.Audio(waveform, rate=CONFIG.audio['sample_rate'])) \n", " return alignment, mel_postnet_spec, stop_tokens, waveform" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "ZksegYQepkFg", "colab_type": "text" }, "source": [ "### Load Models" ] }, { "cell_type": "code", "metadata": { "id": "oVa0kOamprgj", "colab_type": "code", "colab": {} }, "source": [ "import os\n", "import torch\n", "import time\n", "import IPython\n", "\n", "from TTS.tts.tf.utils.generic_utils import setup_model\n", "from TTS.tts.tf.utils.io import load_checkpoint\n", "from TTS.utils.io import load_config\n", "from TTS.tts.utils.text.symbols import symbols, phonemes\n", "from TTS.utils.audio import AudioProcessor\n", "from TTS.tts.utils.synthesis import synthesis" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "EY-sHVO8IFSH", "colab_type": "code", "colab": {} }, "source": [ "# runtime settings\n", "use_cuda = False" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "_1aIUp2FpxOQ", "colab_type": "code", "colab": {} }, "source": [ "# model paths\n", "TTS_MODEL = \"data/tts_model.pkl\"\n", "TTS_CONFIG = \"data/config.json\"\n", "VOCODER_MODEL = \"data/vocoder_model.pkl\"\n", "VOCODER_CONFIG = \"data/config_vocoder.json\"" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "CpgmdBVQplbv", "colab_type": "code", "colab": {} }, "source": [ "# load configs\n", "TTS_CONFIG = load_config(TTS_CONFIG)\n", "VOCODER_CONFIG = load_config(VOCODER_CONFIG)" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "zmrQxiozIUVE", "colab_type": "code", "colab": { "base_uri": "https://localhost:8080/", "height": 471 }, "outputId": "fa71bd05-401f-4e5b-a6f7-60ae765966db", "tags": [] }, "source": [ "# load the audio processor\n", "TTS_CONFIG.audio['stats_path'] = 'data/scale_stats.npy'\n", "ap = AudioProcessor(**TTS_CONFIG.audio) " ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "8fLoI4ipqMeS", "colab_type": "code", "colab": { "base_uri": "https://localhost:8080/", "height": 72 }, "outputId": "595d990f-930d-4698-ee14-77796b5eed7d", "tags": [] }, "source": [ "# LOAD TTS MODEL\n", "# multi speaker \n", "speaker_id = None\n", "speakers = []\n", "\n", "# load the model\n", "num_chars = len(phonemes) if TTS_CONFIG.use_phonemes else len(symbols)\n", "model = setup_model(num_chars, len(speakers), TTS_CONFIG)\n", "model.build_inference()\n", "model = load_checkpoint(model, TTS_MODEL)\n", "model.decoder.set_max_decoder_steps(1000)" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "zKoq0GgzqzhQ", "colab_type": "code", "colab": { "base_uri": "https://localhost:8080/", "height": 489 }, "outputId": "2cc3deae-144f-4465-da3b-98628d948506" }, "source": [ "from TTS.vocoder.tf.utils.generic_utils import setup_generator\n", "from TTS.vocoder.tf.utils.io import load_checkpoint\n", "\n", "# LOAD VOCODER MODEL\n", "vocoder_model = setup_generator(VOCODER_CONFIG)\n", "vocoder_model.build_inference()\n", "vocoder_model = load_checkpoint(vocoder_model, VOCODER_MODEL)\n", "vocoder_model.inference_padding = 0\n", "\n", "ap_vocoder = AudioProcessor(**VOCODER_CONFIG['audio']) " ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "Ws_YkPKsLgo-", "colab_type": "text" }, "source": [ "## Run Inference" ] }, { "cell_type": "code", "metadata": { "id": "FuWxZ9Ey5Puj", "colab_type": "code", "colab": { "base_uri": "https://localhost:8080/", "height": 134 }, "outputId": "07ede6e5-06e6-4612-f687-7984d20e5254" }, "source": [ "sentence = \"Bill got in the habit of asking himself “Is that thought true?” and if he wasn’t absolutely certain it was, he just let it go.\"\n", "align, spec, stop_tokens, wav = tts(model, sentence, TTS_CONFIG, ap)" ], "execution_count": null, "outputs": [] } ] }