import os from TTS.config import BaseAudioConfig, BaseDatasetConfig from TTS.trainer import Trainer, TrainingArgs from TTS.tts.configs.speedy_speech_config import SpeedySpeechConfig from TTS.tts.datasets import load_tts_samples from TTS.tts.models.forward_tts import ForwardTTS from TTS.tts.utils.speakers import SpeakerManager from TTS.utils.audio import AudioProcessor output_path = os.path.dirname(os.path.abspath(__file__)) dataset_config = BaseDatasetConfig(name="vctk", meta_file_train="", path=os.path.join(output_path, "../VCTK/")) audio_config = BaseAudioConfig( sample_rate=22050, do_trim_silence=True, trim_db=23.0, signal_norm=False, mel_fmin=0.0, mel_fmax=8000, spec_gain=1.0, log_func="np.log", ref_level_db=20, preemphasis=0.0, ) config = SpeedySpeechConfig( run_name="fast_pitch_ljspeech", audio=audio_config, batch_size=32, eval_batch_size=16, num_loader_workers=8, num_eval_loader_workers=4, compute_input_seq_cache=True, compute_f0=True, f0_cache_path=os.path.join(output_path, "f0_cache"), run_eval=True, test_delay_epochs=-1, epochs=1000, text_cleaner="english_cleaners", use_phonemes=True, use_espeak_phonemes=False, phoneme_language="en-us", phoneme_cache_path=os.path.join(output_path, "phoneme_cache"), print_step=50, print_eval=False, mixed_precision=False, sort_by_audio_len=True, max_seq_len=500000, output_path=output_path, datasets=[dataset_config], use_speaker_embedding=True, ) # init audio processor ap = AudioProcessor(**config.audio) # load training samples train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True) # init speaker manager for multi-speaker training # it maps speaker-id to speaker-name in the model and data-loader speaker_manager = SpeakerManager() speaker_manager.set_speaker_ids_from_data(train_samples + eval_samples) config.model_args.num_speakers = speaker_manager.num_speakers # init model model = ForwardTTS(config, speaker_manager) # init the trainer and 🚀 trainer = Trainer( TrainingArgs(), config, output_path, model=model, train_samples=train_samples, eval_samples=eval_samples, training_assets={"audio_processor": ap}, ) trainer.fit()