{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "cd /home/erogol/projects/" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", "from mozilla_voice_tts.tts.utils.audio import AudioProcessor\n", "from mozilla_voice_tts.tts.utils.visual import plot_spectrogram\n", "from mozilla_voice_tts.tts.utils.generic_utils import load_config\n", "import glob \n", "import IPython.display as ipd" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "config_path = \"/media/erogol/data_ssd/Data/models/tr/TTS-phoneme-January-14-2019_06+52PM-4ad64a7/config.json\"\n", "data_path = \"/home/erogol/Data/Mozilla/\"\n", "file_paths = glob.glob(data_path + \"/**/*.wav\", recursive=True)\n", "CONFIG = load_config(config_path)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Setup Audio Processor\n", "Play with the AP parameters until you find a good fit with the synthesis speech below. " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "audio={\n", " 'audio_processor': 'audio',\n", " 'num_mels': 80, # In general, you don'tneed to change it \n", " 'num_freq': 1025, # In general, you don'tneed to change it \n", " 'sample_rate': 22050, # It depends to the sample rate of the dataset.\n", " 'frame_length_ms': 50, # In general, you don'tneed to change it \n", " 'frame_shift_ms': 12.5, # In general, you don'tneed to change it \n", " 'preemphasis': 0.98, # In general, 0 gives better voice recovery but makes traning harder. If your model does not train, try 0.97 - 0.99.\n", " 'min_level_db': -100,\n", " 'ref_level_db': 20, # It is the base DB, higher until you remove the background noise in the spectrogram and then lower until you hear a better speech below.\n", " 'power': 1.5, # Change this value and listen the synthesized voice. 1.2 - 1.5 are some resonable values.\n", " 'griffin_lim_iters': 60, # It does not give any imporvement for values > 60\n", " 'signal_norm': True, # This is more about your model. It does not give any change for the synthsis performance.\n", " 'symmetric_norm': False, # Same as above\n", " 'max_norm': 1, # Same as above\n", " 'clip_norm': True, # Same as above\n", " 'mel_fmin': 0.0, # You can play with this and check mel-spectrogram based voice synthesis below.\n", " 'mel_fmax': 8000.0, # You can play with this and check mel-spectrogram based voice synthesis below.\n", " 'do_trim_silence': True} # If you dataset has some silience at the beginning or end, this trims it. Check the AP.load_wav() below,if it causes any difference for the loaded audio file.\n", "\n", "AP = AudioProcessor(**audio);" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Check audio loading " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "wav = AP.load_wav(file_paths[10])\n", "ipd.Audio(data=wav, rate=AP.sample_rate) " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Generate Mel-Spectrogram and Re-synthesis with GL" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "mel = AP.melspectrogram(wav)\n", "print(\"Max:\", mel.max())\n", "print(\"Min:\", mel.min())\n", "print(\"Mean:\", mel.mean())\n", "plot_spectrogram(mel.T, AP);\n", "\n", "wav_gen = AP.inv_mel_spectrogram(mel)\n", "ipd.Audio(wav_gen, rate=AP.sample_rate)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Generate Linear-Spectrogram and Re-synthesis with GL" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "spec = AP.spectrogram(wav)\n", "print(\"Max:\", spec.max())\n", "print(\"Min:\", spec.min())\n", "print(\"Mean:\", spec.mean())\n", "plot_spectrogram(spec.T, AP);\n", "\n", "wav_gen = AP.inv_spectrogram(spec)\n", "ipd.Audio(wav_gen, rate=AP.sample_rate)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Compare values for a certain parameter\n", "\n", "Optimize your parameters by comparing different values per parameter at a time." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "audio={\n", " 'audio_processor': 'audio',\n", " 'num_mels': 80, # In general, you don'tneed to change it \n", " 'num_freq': 1025, # In general, you don'tneed to change it \n", " 'sample_rate': 22050, # It depends to the sample rate of the dataset.\n", " 'frame_length_ms': 50, # In general, you don'tneed to change it \n", " 'frame_shift_ms': 12.5, # In general, you don'tneed to change it \n", " 'preemphasis': 0.98, # In general, 0 gives better voice recovery but makes traning harder. If your model does not train, try 0.97 - 0.99.\n", " 'min_level_db': -100,\n", " 'ref_level_db': 20, # It is the base DB, higher until you remove the background noise in the spectrogram and then lower until you hear a better speech below.\n", " 'power': 1.5, # Change this value and listen the synthesized voice. 1.2 - 1.5 are some resonable values.\n", " 'griffin_lim_iters': 60, # It does not give any imporvement for values > 60\n", " 'signal_norm': True, # This is more about your model. It does not give any change for the synthsis performance.\n", " 'symmetric_norm': False, # Same as above\n", " 'max_norm': 1, # Same as above\n", " 'clip_norm': True, # Same as above\n", " 'mel_fmin': 0.0, # You can play with this and check mel-spectrogram based voice synthesis below.\n", " 'mel_fmax': 8000.0, # You can play with this and check mel-spectrogram based voice synthesis below.\n", " 'do_trim_silence': True} # If you dataset has some silience at the beginning or end, this trims it. Check the AP.load_wav() below,if it causes any difference for the loaded audio file.\n", "\n", "AP = AudioProcessor(**audio);" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from librosa import display\n", "from matplotlib import pylab as plt\n", "import IPython\n", "plt.rcParams['figure.figsize'] = (20.0, 16.0)\n", "\n", "def compare_values(attribute, values, file):\n", " \"\"\"\n", " attributes (str): the names of the attribute you like to test.\n", " values (list): list of values to compare.\n", " file (str): file name to perform the tests.\n", " \"\"\"\n", " wavs = []\n", " for idx, val in enumerate(values):\n", " set_val_cmd = \"AP.{}={}\".format(attribute, val)\n", " exec(set_val_cmd)\n", " wav = AP.load_wav(file)\n", " spec = AP.spectrogram(wav)\n", " spec_norm = AP._denormalize(spec.T)\n", " plt.subplot(len(values), 2, 2*idx + 1)\n", " plt.imshow(spec_norm.T, aspect=\"auto\", origin=\"lower\")\n", " # plt.colorbar()\n", " plt.tight_layout()\n", " wav_gen = AP.inv_spectrogram(spec)\n", " wavs.append(wav_gen)\n", " plt.subplot(len(values), 2, 2*idx + 2)\n", " display.waveplot(wav, alpha=0.5)\n", " display.waveplot(wav_gen, alpha=0.25)\n", " plt.title(\"{}={}\".format(attribute, val))\n", " plt.tight_layout()\n", " \n", " wav = AP.load_wav(file)\n", " print(\" > Ground-truth\")\n", " IPython.display.display(IPython.display.Audio(wav, rate=AP.sample_rate))\n", " \n", " for idx, wav_gen in enumerate(wavs):\n", " val = values[idx]\n", " print(\" > {} = {}\".format(attribute, val))\n", " IPython.display.display(IPython.display.Audio(wav_gen, rate=AP.sample_rate))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "compare_values(\"preemphasis\", [0, 0.5, 0.97, 0.98, 0.99], file_paths[10])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "compare_values(\"ref_level_db\", [10, 15, 20, 25, 30, 35, 40], file_paths[10])" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.4" } }, "nbformat": 4, "nbformat_minor": 4 }