import os import sys import librosa import pickle import copy import numpy as np from scipy import signal import lws _mel_basis = None class AudioProcessor(object): def __init__( self, sample_rate, num_mels, min_level_db, frame_shift_ms, frame_length_ms, ref_level_db, num_freq, power, preemphasis, min_mel_freq, max_mel_freq, griffin_lim_iters=None, ): print(" > Setting up Audio Processor...") self.sample_rate = sample_rate self.num_mels = num_mels self.min_level_db = min_level_db self.frame_shift_ms = frame_shift_ms self.frame_length_ms = frame_length_ms self.ref_level_db = ref_level_db self.num_freq = num_freq self.power = power self.min_mel_freq = min_mel_freq self.max_mel_freq = max_mel_freq self.griffin_lim_iters = griffin_lim_iters self.preemphasis = preemphasis self.n_fft, self.hop_length, self.win_length = self._stft_parameters() if preemphasis == 0: print(" | > Preemphasis is deactive.") def save_wav(self, wav, path): wav *= 32767 / max(0.01, np.max(np.abs(wav))) librosa.output.write_wav( path, wav.astype(np.int16), self.sample_rate) def _stft_parameters(self, ): n_fft = int((self.num_freq - 1) * 2) hop_length = int(self.frame_shift_ms / 1000.0 * self.sample_rate) win_length = int(self.frame_length_ms / 1000.0 * self.sample_rate) if n_fft % hop_length != 0: hop_length = n_fft / 8 print(" | > hop_length is set to default ({}).".format(hop_length)) if n_fft % win_length != 0: win_length = n_fft / 2 print(" | > win_length is set to default ({}).".format(win_length)) print(" | > fft size: {}, hop length: {}, win length: {}".format( n_fft, hop_length, win_length)) return int(n_fft), int(hop_length), int(win_length) def _lws_processor(self): try: return lws.lws( self.win_length, self.hop_length, fftsize=self.n_fft, mode="speech") except: raise RuntimeError( " !! WindowLength({}) is not multiple of HopLength({}).". format(self.win_length, self.hop_length)) def _amp_to_db(self, x): min_level = np.exp(self.min_level_db / 20 * np.log(10)) return 20 * np.log10(np.maximum(min_level, x)) def _db_to_amp(self, x): return np.power(10.0, x * 0.05) def _normalize(self, S): return np.clip((S - self.min_level_db) / -self.min_level_db, 0, 1) def _denormalize(self, S): return (np.clip(S, 0, 1) * -self.min_level_db) + self.min_level_db def apply_preemphasis(self, x): if self.preemphasis == 0: raise RuntimeError(" !! Preemphasis is applied with factor 0.0. ") return signal.lfilter([1, -self.preemphasis], [1], x) def apply_inv_preemphasis(self, x): if self.preemphasis == 0: raise RuntimeError(" !! Preemphasis is applied with factor 0.0. ") return signal.lfilter([1], [1, -self.preemphasis], x) def spectrogram(self, y): f = open(os.devnull, 'w') old_out = sys.stdout sys.stdout = f if self.preemphasis: D = self._lws_processor().stft(self.apply_preemphasis(y)).T else: D = self._lws_processor().stft(y).T S = self._amp_to_db(np.abs(D)) - self.ref_level_db sys.stdout = old_out return self._normalize(S) def inv_spectrogram(self, spectrogram): '''Converts spectrogram to waveform using librosa''' f = open(os.devnull, 'w') old_out = sys.stdout sys.stdout = f S = self._denormalize(spectrogram) S = self._db_to_amp(S + self.ref_level_db) # Convert back to linear processor = self._lws_processor() D = processor.run_lws(S.astype(np.float64).T**self.power) y = processor.istft(D).astype(np.float32) # Reconstruct phase sys.stdout = old_out if self.preemphasis: return self.apply_inv_preemphasis(y) return y def _linear_to_mel(self, spectrogram): global _mel_basis if _mel_basis is None: _mel_basis = self._build_mel_basis() return np.dot(_mel_basis, spectrogram) def _build_mel_basis(self, ): return librosa.filters.mel( self.sample_rate, self.n_fft, n_mels=self.num_mels) # fmin=self.min_mel_freq, fmax=self.max_mel_freq) def melspectrogram(self, y): f = open(os.devnull, 'w') old_out = sys.stdout sys.stdout = f if self.preemphasis: D = self._lws_processor().stft(self.apply_preemphasis(y)).T else: D = self._lws_processor().stft(y).T S = self._amp_to_db(self._linear_to_mel(np.abs(D))) - self.ref_level_db sys.stdout = old_out return self._normalize(S)