import torch import numpy as np from .text import text_to_sequence, phoneme_to_sequence def text_to_seqvec(text, CONFIG, use_cuda): text_cleaner = [CONFIG.text_cleaner] # text ot phonemes to sequence vector if CONFIG.use_phonemes: seq = np.asarray( phoneme_to_sequence(text, text_cleaner, CONFIG.phoneme_language, CONFIG.enable_eos_bos_chars), dtype=np.int32) else: seq = np.asarray(text_to_sequence(text, text_cleaner), dtype=np.int32) # torch tensor chars_var = torch.from_numpy(seq).unsqueeze(0) if use_cuda: chars_var = chars_var.cuda() return chars_var.long() def compute_style_mel(style_wav, ap, use_cuda): print(style_wav) style_mel = torch.FloatTensor(ap.melspectrogram( ap.load_wav(style_wav))).unsqueeze(0) if use_cuda: return style_mel.cuda() return style_mel def run_model(model, inputs, CONFIG, truncated, speaker_id=None, style_mel=None): if CONFIG.model == "TacotronGST" and style_mel is not None: decoder_output, postnet_output, alignments, stop_tokens = model.inference( inputs, style_mel=style_mel, speaker_ids=speaker_id) else: if truncated: decoder_output, postnet_output, alignments, stop_tokens = model.inference_truncated( inputs, speaker_ids=speaker_id) else: decoder_output, postnet_output, alignments, stop_tokens = model.inference( inputs, speaker_ids=speaker_id) return decoder_output, postnet_output, alignments, stop_tokens def parse_outputs(postnet_output, decoder_output, alignments): postnet_output = postnet_output[0].data.cpu().numpy() decoder_output = decoder_output[0].data.cpu().numpy() alignment = alignments[0].cpu().data.numpy() return postnet_output, decoder_output, alignment def trim_silence(wav, ap): return wav[:ap.find_endpoint(wav)] def inv_spectrogram(postnet_output, ap, CONFIG): if CONFIG.model in ["Tacotron", "TacotronGST"]: wav = ap.inv_spectrogram(postnet_output.T) else: wav = ap.inv_mel_spectrogram(postnet_output.T) return wav def id_to_torch(speaker_id): if speaker_id is not None: speaker_id = np.asarray(speaker_id) speaker_id = torch.from_numpy(speaker_id).unsqueeze(0) return speaker_id def synthesis(model, text, CONFIG, use_cuda, ap, speaker_id=None, style_wav=None, truncated=False, enable_eos_bos_chars=False, #pylint: disable=unused-argument do_trim_silence=False): """Synthesize voice for the given text. Args: model (TTS.models): model to synthesize. text (str): target text CONFIG (dict): config dictionary to be loaded from config.json. use_cuda (bool): enable cuda. ap (TTS.utils.audio.AudioProcessor): audio processor to process model outputs. speaker_id (int): id of speaker style_wav (str): Uses for style embedding of GST. truncated (bool): keep model states after inference. It can be used for continuous inference at long texts. enable_eos_bos_chars (bool): enable special chars for end of sentence and start of sentence. do_trim_silence (bool): trim silence after synthesis. """ # GST processing style_mel = None if CONFIG.model == "TacotronGST" and style_wav is not None: style_mel = compute_style_mel(style_wav, ap, use_cuda) # preprocess the given text inputs = text_to_seqvec(text, CONFIG, use_cuda) speaker_id = id_to_torch(speaker_id) if speaker_id is not None and use_cuda: speaker_id = speaker_id.cuda() # synthesize voice decoder_output, postnet_output, alignments, stop_tokens = run_model( model, inputs, CONFIG, truncated, speaker_id, style_mel) # convert outputs to numpy postnet_output, decoder_output, alignment = parse_outputs( postnet_output, decoder_output, alignments) # plot results wav = inv_spectrogram(postnet_output, ap, CONFIG) # trim silence if do_trim_silence: wav = trim_silence(wav, ap) return wav, alignment, decoder_output, postnet_output, stop_tokens