mirror of https://github.com/coqui-ai/TTS.git
add usage of new Synthetizer class in the chinese model notebook
parent
7dccbfdcd5
commit
f393c08ad4
|
@ -1,401 +0,0 @@
|
|||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"colab_type": "text",
|
||||
"id": "6LWsNd3_M3MP"
|
||||
},
|
||||
"source": [
|
||||
"# Mozilla TTS on CPU Real-Time Speech Synthesis "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"colab_type": "text",
|
||||
"id": "FAqrSIWgLyP0"
|
||||
},
|
||||
"source": [
|
||||
"We use Tacotron2 and MultiBand-Melgan models and LJSpeech dataset.\n",
|
||||
"\n",
|
||||
"Tacotron2 is trained using [Double Decoder Consistency](https://erogol.com/solving-attention-problems-of-tts-models-with-double-decoder-consistency/) (DDC) only for 130K steps (3 days) with a single GPU.\n",
|
||||
"\n",
|
||||
"MultiBand-Melgan is trained 1.45M steps with real spectrograms.\n",
|
||||
"\n",
|
||||
"Note that both model performances can be improved with more training."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"colab_type": "text",
|
||||
"id": "Ku-dA4DKoeXk"
|
||||
},
|
||||
"source": [
|
||||
"### Download Models"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/",
|
||||
"height": 162
|
||||
},
|
||||
"colab_type": "code",
|
||||
"id": "jGIgnWhGsxU1",
|
||||
"outputId": "88725e41-a8dc-4885-b3bf-cac939f38abe",
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"! mkdir data/\n",
|
||||
"! gdown --id 1SYpv7V__QYDjKXa_vJmNXo1CSkcoZovy -O data/tts_model.pth.tar\n",
|
||||
"! gdown --id 14BIvfJXnFHi3jcxYNX40__TR6RwJOZqi -O data/tts_config.json\n",
|
||||
"! gdown --id 1ECRlXybT6rAWp269CkhjUPwcZ10CkcqD -O data/tts_scale_stats.npy"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/",
|
||||
"height": 235
|
||||
},
|
||||
"colab_type": "code",
|
||||
"id": "4dnpE0-kvTsu",
|
||||
"outputId": "76377c6d-789c-4995-ba00-a21a6e1c401e",
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"! gdown --id 1Ty5DZdOc0F7OTGj9oJThYbL5iVu_2G0K -O data/vocoder_model.pth.tar\n",
|
||||
"! gdown --id 1Rd0R_nRCrbjEdpOwq6XwZAktvugiBvmu -O data/vocoder_config.json\n",
|
||||
"! gdown --id 11oY3Tv0kQtxK_JPgxrfesa99maVXHNxU -O data/vocoder_scale_stats.npy"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"colab_type": "text",
|
||||
"id": "Zlgi8fPdpRF0"
|
||||
},
|
||||
"source": [
|
||||
"### Define TTS function"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"colab": {},
|
||||
"colab_type": "code",
|
||||
"id": "f-Yc42nQZG5A"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def tts(model, text, CONFIG, use_cuda, ap, use_gl, figures=True, style_wav=None):\n",
|
||||
" t_1 = time.time()\n",
|
||||
" waveform, alignment, mel_spec, mel_postnet_spec, stop_tokens, inputs = synthesis(model, text, CONFIG, use_cuda, ap, speaker_id, style_wav=style_wav,\n",
|
||||
" truncated=False, enable_eos_bos_chars=CONFIG.enable_eos_bos_chars)\n",
|
||||
" # mel_postnet_spec = ap.denormalize(mel_postnet_spec.T)\n",
|
||||
" if not use_gl:\n",
|
||||
" waveform = vocoder_model.inference(torch.FloatTensor(mel_postnet_spec.T).unsqueeze(0))\n",
|
||||
" waveform = waveform.flatten()\n",
|
||||
" if use_cuda:\n",
|
||||
" waveform = waveform.cpu()\n",
|
||||
" waveform = waveform.numpy()\n",
|
||||
" rtf = (time.time() - t_1) / (len(waveform) / ap.sample_rate)\n",
|
||||
" tps = (time.time() - t_1) / len(waveform)\n",
|
||||
" print(waveform.shape)\n",
|
||||
" print(\" > Run-time: {}\".format(time.time() - t_1))\n",
|
||||
" print(\" > Real-time factor: {}\".format(rtf))\n",
|
||||
" print(\" > Time per step: {}\".format(tps))\n",
|
||||
" IPython.display.display(IPython.display.Audio(waveform, rate=CONFIG.audio['sample_rate'])) \n",
|
||||
" return alignment, mel_postnet_spec, stop_tokens, waveform"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"colab_type": "text",
|
||||
"id": "ZksegYQepkFg"
|
||||
},
|
||||
"source": [
|
||||
"### Load Models"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"colab": {},
|
||||
"colab_type": "code",
|
||||
"id": "oVa0kOamprgj"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"import torch\n",
|
||||
"import time\n",
|
||||
"import IPython\n",
|
||||
"\n",
|
||||
"from TTS.tts.utils.generic_utils import setup_model\n",
|
||||
"from TTS.utils.io import load_config\n",
|
||||
"from TTS.tts.utils.text.symbols import symbols, phonemes, make_symbols\n",
|
||||
"from TTS.utils.audio import AudioProcessor\n",
|
||||
"from TTS.tts.utils.synthesis import synthesis"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"colab": {},
|
||||
"colab_type": "code",
|
||||
"id": "EY-sHVO8IFSH"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# runtime settings\n",
|
||||
"use_cuda = False"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"colab": {},
|
||||
"colab_type": "code",
|
||||
"id": "_1aIUp2FpxOQ"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# model paths\n",
|
||||
"TTS_MODEL = \"/tank/models/tts/mozilla-TTS/tacotron2-DCC/chinese_mandarin/mandarin_dca_attn_gst_dcc-February-12-2021_03+13PM-5dbb48d/checkpoint_17000.pth.tar\"\n",
|
||||
"TTS_CONFIG = \"/tank/models/tts/mozilla-TTS/tacotron2-DCC/chinese_mandarin/mandarin_dca_attn_gst_dcc-February-12-2021_03+13PM-5dbb48d/config.json\"\n",
|
||||
"\n",
|
||||
"TTS_MODEL = \"data/tts_model.pth.tar\"\n",
|
||||
"TTS_CONFIG = \"data/tts_config.json\"\n",
|
||||
"\n",
|
||||
"VOCODER_MODEL = \"/root/.local/share/tts/vocoder_models--en--ljspeech--mulitband-melgan/model_file.pth.tar\"\n",
|
||||
"VOCODER_CONFIG = \"/root/.local/share/tts/vocoder_models--en--ljspeech--mulitband-melgan/config.json\"\n",
|
||||
"\n",
|
||||
"VOCODER_MODEL = \"data/vocoder_model.pth.tar\"\n",
|
||||
"VOCODER_CONFIG = \"data/vocoder_config.json\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"colab": {},
|
||||
"colab_type": "code",
|
||||
"id": "CpgmdBVQplbv"
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# load configs\n",
|
||||
"TTS_CONFIG = load_config(TTS_CONFIG)\n",
|
||||
"VOCODER_CONFIG = load_config(VOCODER_CONFIG)\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/",
|
||||
"height": 471
|
||||
},
|
||||
"colab_type": "code",
|
||||
"id": "zmrQxiozIUVE",
|
||||
"outputId": "60c4daa0-4c5b-4a2e-fe0d-be437d003a49",
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# load the audio processor\n",
|
||||
"TTS_CONFIG.audio['stats_path'] = 'data/tts_scale_stats.npy'\n",
|
||||
"ap = AudioProcessor(**TTS_CONFIG.audio) "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/",
|
||||
"height": 35
|
||||
},
|
||||
"colab_type": "code",
|
||||
"id": "8fLoI4ipqMeS",
|
||||
"outputId": "b789066e-e305-42ad-b3ca-eba8d9267382",
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# LOAD TTS MODEL\n",
|
||||
"# multi speaker \n",
|
||||
"speaker_id = None\n",
|
||||
"speakers = []\n",
|
||||
"\n",
|
||||
"# load the model (chinese_mandarin special characters/punctuations are in the tts_config.json)\n",
|
||||
"if TTS_CONFIG.get(\"characters\"):\n",
|
||||
" _characters = TTS_CONFIG[\"characters\"][\"characters\"]\n",
|
||||
" _phonemes = TTS_CONFIG[\"characters\"][\"phonemes\"]\n",
|
||||
" _punctuations = TTS_CONFIG[\"characters\"][\"punctuations\"]\n",
|
||||
" _pad = TTS_CONFIG[\"characters\"][\"pad\"]\n",
|
||||
" _eos = TTS_CONFIG[\"characters\"][\"eos\"]\n",
|
||||
" _bos = TTS_CONFIG[\"characters\"][\"bos\"]\n",
|
||||
" \n",
|
||||
" symbols, phonemes = make_symbols(_characters, _phonemes, punctuations= _punctuations, pad=_pad, eos=_eos, bos=_bos )\n",
|
||||
"\n",
|
||||
"num_chars = len(phonemes) if TTS_CONFIG.use_phonemes else len(symbols)\n",
|
||||
"model = setup_model(num_chars, len(speakers), TTS_CONFIG)\n",
|
||||
"\n",
|
||||
"# load model state\n",
|
||||
"cp = torch.load(TTS_MODEL, map_location=torch.device('cpu'))\n",
|
||||
"\n",
|
||||
"# load the model\n",
|
||||
"model.load_state_dict(cp['model'])\n",
|
||||
"if use_cuda:\n",
|
||||
" model.cuda()\n",
|
||||
"model.eval()\n",
|
||||
"\n",
|
||||
"# set model stepsize\n",
|
||||
"if 'r' in cp:\n",
|
||||
" model.decoder.set_r(cp['r'])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/",
|
||||
"height": 1000
|
||||
},
|
||||
"colab_type": "code",
|
||||
"id": "zKoq0GgzqzhQ",
|
||||
"outputId": "234efc61-f37a-40bc-95a3-b51896018ccb",
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from TTS.vocoder.utils.generic_utils import setup_generator\n",
|
||||
"\n",
|
||||
"# LOAD VOCODER MODEL\n",
|
||||
"vocoder_model = setup_generator(VOCODER_CONFIG)\n",
|
||||
"vocoder_model.load_state_dict(torch.load(VOCODER_MODEL, map_location=\"cpu\")[\"model\"])\n",
|
||||
"vocoder_model.remove_weight_norm()\n",
|
||||
"vocoder_model.inference_padding = 0\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"VOCODER_CONFIG.audio['stats_path'] = 'data/vocoder_scale_stats.npy'\n",
|
||||
"ap_vocoder = AudioProcessor(**VOCODER_CONFIG['audio']) \n",
|
||||
"if use_cuda:\n",
|
||||
" vocoder_model.cuda()\n",
|
||||
"vocoder_model.eval()\n",
|
||||
"print(\"\\nVocoder loaded\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"colab_type": "text",
|
||||
"id": "Ws_YkPKsLgo-"
|
||||
},
|
||||
"source": [
|
||||
"## Run Inference"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Here some test sentences for you to play with :\n",
|
||||
"sentence = \"我从来不会说很标准的中文。\"\n",
|
||||
"sentence = \"我喜欢听人工智能的博客。\"\n",
|
||||
"sentence = \"我来自一个法国郊区的地方。\"\n",
|
||||
"sentence = \"不比不知道,一比吓一跳!\"\n",
|
||||
"sentence = \"台湾是一个真的很好玩的地方!\"\n",
|
||||
"sentence = \"干一行,行一行,行行都行。\"\n",
|
||||
"sentence = \"我要盖被子,好尴尬!\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# You can also play with the style_wav global style token. However, the lady speaking in the baker dataset\n",
|
||||
"# has no emotion through all the sentences. It's hard to get some nice GST with this.\n",
|
||||
"# That's also why adding \"!\" or \"?\" at the end of sentence change nothing. The dataset has no such prosody.\n",
|
||||
"style_wav = {\"2\": 0.3, \"1\": -0.1}\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"colab": {
|
||||
"base_uri": "https://localhost:8080/",
|
||||
"height": 134
|
||||
},
|
||||
"colab_type": "code",
|
||||
"id": "FuWxZ9Ey5Puj",
|
||||
"outputId": "9c06adad-5451-4393-89a1-a2e7dc39ab91",
|
||||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"sentence = \"我喜欢听人工智能的博客。\"\n",
|
||||
"style_wav = {\"2\": 0.2, \"7\": -0.1}\n",
|
||||
"\n",
|
||||
"align, spec, stop_tokens, wav = tts(model, sentence, TTS_CONFIG, use_cuda, ap, use_gl=False, figures=True, style_wav= style_wav)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"accelerator": "GPU",
|
||||
"colab": {
|
||||
"collapsed_sections": [],
|
||||
"name": "DDC-TTS_and_MultiBand-MelGAN_Example.ipynb",
|
||||
"provenance": [],
|
||||
"toc_visible": true
|
||||
},
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.8.5"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
File diff suppressed because one or more lines are too long
Loading…
Reference in New Issue