Test `TTS.tts.utils.helpers`

pull/800/head
Eren Gölge 2021-09-10 08:25:21 +00:00
parent 8b7e094bde
commit ed4b1d8514
2 changed files with 65 additions and 7 deletions

View File

@ -1,6 +1,3 @@
import torch
import numpy as np
import numpy as np
import torch
from torch.nn import functional as F
@ -14,9 +11,9 @@ except ModuleNotFoundError:
class StandardScaler:
"""StandardScaler for mean-std normalization with the given mean and std values.
"""
def __init__(self, mean:np.ndarray=None, std:np.ndarray=None) -> None:
"""StandardScaler for mean-std normalization with the given mean and std values."""
def __init__(self, mean: np.ndarray = None, std: np.ndarray = None) -> None:
self.mean_ = mean
self.std_ = std
@ -97,6 +94,7 @@ def rand_segments(x: torch.tensor, x_lengths: torch.tensor = None, segment_size=
ret = segment(x, segment_indices, segment_size)
return ret, segment_indices
def average_over_durations(values, durs):
"""Average values over durations.
@ -212,4 +210,4 @@ def maximum_path_numpy(value, mask, max_neg_val=None):
index = index + direction[index_range, index, j] - 1
path = path * mask.astype(np.float32)
path = torch.from_numpy(path).to(device=device, dtype=dtype)
return path
return path

View File

@ -0,0 +1,60 @@
import torch as T
from TTS.tts.utils.helpers import *
def average_over_durations_test(): # pylint: disable=no-self-use
pitch = T.rand(1, 1, 128)
durations = T.randint(1, 5, (1, 21))
coeff = 128.0 / durations.sum()
durations = T.floor(durations * coeff)
diff = 128.0 - durations.sum()
durations[0, -1] += diff
durations = durations.long()
pitch_avg = average_over_durations(pitch, durations)
index = 0
for idx, dur in enumerate(durations[0]):
assert abs(pitch_avg[0, 0, idx] - pitch[0, 0, index : index + dur.item()].mean()) < 1e-5
index += dur
def seqeunce_mask_test():
lengths = T.randint(10, 15, (8,))
mask = sequence_mask(lengths)
for i in range(8):
l = lengths[i].item()
assert mask[i, :l].sum() == l
assert mask[i, l:].sum() == 0
def segment_test():
x = T.range(0, 11)
x = x.repeat(8, 1).unsqueeze(1)
segment_ids = T.randint(0, 7, (8,))
segments = segment(x, segment_ids, segment_size=4)
for idx, start_indx in enumerate(segment_ids):
assert x[idx, :, start_indx : start_indx + 4].sum() == segments[idx, :, :].sum()
def generate_path_test():
durations = T.randint(1, 4, (10, 21))
x_length = T.randint(18, 22, (10,))
x_mask = sequence_mask(x_length).unsqueeze(1).long()
durations = durations * x_mask.squeeze(1)
y_length = durations.sum(1)
y_mask = sequence_mask(y_length).unsqueeze(1).long()
attn_mask = (torch.unsqueeze(x_mask, -1) * torch.unsqueeze(y_mask, 2)).squeeze(1).long()
print(attn_mask.shape)
path = generate_path(durations, attn_mask)
assert path.shape == (10, 21, durations.sum(1).max().item())
for b in range(durations.shape[0]):
current_idx = 0
for t in range(durations.shape[1]):
assert all(path[b, t, current_idx : current_idx + durations[b, t].item()] == 1.0)
assert all(path[b, t, :current_idx] == 0.0)
assert all(path[b, t, current_idx + durations[b, t].item() :] == 0.0)
current_idx += durations[b, t].item()