diff --git a/tests/test_extract_tts_spectrograms.py b/tests/test_extract_tts_spectrograms.py index 41e52229..618d7b64 100644 --- a/tests/test_extract_tts_spectrograms.py +++ b/tests/test_extract_tts_spectrograms.py @@ -5,81 +5,62 @@ import torch from tests import get_tests_input_path -from TTS.tts.models.tacotron2 import Tacotron2 -from TTS.tts.models.glow_tts import GlowTTS +from tests import get_tests_output_path, run_cli + +from TTS.tts.utils.generic_utils import setup_model -from TTS.utils.audio import AudioProcessor from TTS.utils.io import load_config - -from TTS.bin.extract_tts_spectrograms import inference +from TTS.tts.utils.text.symbols import phonemes, symbols torch.manual_seed(1) -use_cuda = torch.cuda.is_available() -device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") - -c = load_config(os.path.join(get_tests_input_path(), "test_config.json")) -# set params from tacotron inference -c.bidirectional_decoder = False -c.double_decoder_consistency = False -ap = AudioProcessor(**c.audio) - # pylint: disable=protected-access class TestExtractTTSSpectrograms(unittest.TestCase): @staticmethod def test_GlowTTS(): - input_dummy = torch.randint(0, 24, (8, 128)).long().to(device) - input_lengths = torch.randint(100, 129, (8,)).long().to(device) - input_lengths[-1] = 128 - mel_spec = torch.rand(8, c.audio["num_mels"], 30).to(device) - mel_lengths = torch.randint(20, 30, (8,)).long().to(device) - + # set paths + config_path = os.path.join(get_tests_input_path(), "test_glow_tts.json") + checkpoint_path = os.path.join(get_tests_output_path(), 'checkpoint_test.pth.tar') + output_path = os.path.join(get_tests_output_path(), 'output_extract_tts_spectrograms/') + # load config + c = load_config(config_path) # create model - model = GlowTTS( - num_chars=32, - hidden_channels_enc=48, - hidden_channels_dec=48, - hidden_channels_dp=32, - out_channels=c.audio["num_mels"], - encoder_type="rel_pos_transformer", - encoder_params={ - "kernel_size": 3, - "dropout_p": 0.1, - "num_layers": 6, - "num_heads": 2, - "hidden_channels_ffn": 16, # 4 times the hidden_channels - "input_length": None, - }, - use_encoder_prenet=True, - num_flow_blocks_dec=12, - kernel_size_dec=5, - dilation_rate=1, - num_block_layers=4, - dropout_p_dec=0.0, - num_speakers=0, - c_in_channels=0, - num_splits=4, - num_squeeze=1, - sigmoid_scale=False, - mean_only=False, - ).to(device) - - model.eval() - _ = inference('glow_tts', model, c, ap, input_dummy, input_lengths, mel_spec.permute(0, 2, 1), mel_lengths) - print("GlowTTS extract tts spectrograms ok !") - + num_chars = len(phonemes if c.use_phonemes else symbols) + model = setup_model(num_chars, 1, c, speaker_embedding_dim=None) + # save model + torch.save({"model": model.state_dict()}, checkpoint_path) + # run test + run_cli(f'CUDA_VISIBLE_DEVICES="" python3 TTS/bin/extract_tts_spectrograms.py --config_path "{config_path}" --checkpoint_path "{checkpoint_path}" --output_path "{output_path}"') + run_cli(f'rm -rf "{output_path}" "{checkpoint_path}"') + @staticmethod + def test_Tacotron2(): + # set paths + config_path = os.path.join(get_tests_input_path(), "test_tacotron2_config.json") + checkpoint_path = os.path.join(get_tests_output_path(), 'checkpoint_test.pth.tar') + output_path = os.path.join(get_tests_output_path(), 'output_extract_tts_spectrograms/') + # load config + c = load_config(config_path) + # create model + num_chars = len(phonemes if c.use_phonemes else symbols) + model = setup_model(num_chars, 1, c, speaker_embedding_dim=None) + # save model + torch.save({"model": model.state_dict()}, checkpoint_path) + # run test + run_cli(f'CUDA_VISIBLE_DEVICES="" python3 TTS/bin/extract_tts_spectrograms.py --config_path "{config_path}" --checkpoint_path "{checkpoint_path}" --output_path "{output_path}"') + run_cli(f'rm -rf "{output_path}" "{checkpoint_path}"') @staticmethod def test_Tacotron(): - input_dummy = torch.randint(0, 24, (8, 128)).long().to(device) - input_lengths = torch.randint(100, 128, (8,)).long().to(device) - input_lengths = torch.sort(input_lengths, descending=True)[0] - mel_spec = torch.rand(8, 30, c.audio["num_mels"]).to(device) - mel_lengths = torch.randint(20, 30, (8,)).long().to(device) - mel_lengths[0] = 30 - + # set paths + config_path = os.path.join(get_tests_input_path(), "test_tacotron_config.json") + checkpoint_path = os.path.join(get_tests_output_path(), 'checkpoint_test.pth.tar') + output_path = os.path.join(get_tests_output_path(), 'output_extract_tts_spectrograms/') + # load config + c = load_config(config_path) # create model - model = Tacotron2(num_chars=24, decoder_output_dim=c.audio["num_mels"], r=c.r, num_speakers=1).to(device) - model.eval() - - _ = inference('tacotron2', model, c, ap, input_dummy, input_lengths, mel_spec, mel_lengths) - print("Tacotron extract tts spectrograms ok !") + num_chars = len(phonemes if c.use_phonemes else symbols) + model = setup_model(num_chars, 1, c, speaker_embedding_dim=None) + # save model + torch.save({"model": model.state_dict()}, checkpoint_path) + # run test + run_cli(f'CUDA_VISIBLE_DEVICES="" python3 TTS/bin/extract_tts_spectrograms.py --config_path "{config_path}" --checkpoint_path "{checkpoint_path}" --output_path "{output_path}"') + run_cli(f'rm -rf "{output_path}" "{checkpoint_path}"')