server update for changing r value

pull/10/head
Eren Golge 2019-08-23 12:28:05 +02:00
parent 97ffa2b44e
commit e02fc51fde
2 changed files with 23 additions and 31 deletions

View File

@ -9,6 +9,7 @@ from utils.audio import AudioProcessor
from utils.generic_utils import load_config, setup_model
from utils.text import phoneme_to_sequence, phonemes, symbols, text_to_sequence, sequence_to_phoneme
from utils.speakers import load_speaker_mapping
from utils.synthesis import *
import re
alphabets = r"([A-Za-z])"
@ -41,28 +42,25 @@ class Synthesizer(object):
self.ap = AudioProcessor(**self.tts_config.audio)
if self.use_phonemes:
self.input_size = len(phonemes)
self.input_adapter = lambda sen: phoneme_to_sequence(sen, [self.tts_config.text_cleaner], self.tts_config.phoneme_language, self.tts_config.enable_eos_bos_chars)
else:
self.input_size = len(symbols)
self.input_adapter = lambda sen: text_to_sequence(sen, [self.tts_config.text_cleaner])
# load speakers
if self.config.tts_speakers is not None:
self.tts_speakers = load_speaker_mapping(os.path.join(model_path, self.config.tts_speakers))
num_speakers = len(self.tts_speakers)
else:
num_speakers = 0
self.tts_model = setup_model(self.input_size, num_speakers=num_speakers , c=self.tts_config)
self.tts_model = setup_model(self.input_size, num_speakers=num_speakers, c=self.tts_config)
# load model state
if use_cuda:
cp = torch.load(self.model_file)
else:
cp = torch.load(self.model_file, map_location=lambda storage, loc: storage)
# load the model
self.tts_model.load_state_dict(cp['model'])
if use_cuda:
self.tts_model.cuda()
self.tts_model.eval()
self.tts_model.decoder.max_decoder_steps = 3000
if 'r' in cp:
self.tts_model.decoder.set_r(cp['r'])
def load_wavernn(self, lib_path, model_path, model_file, model_config, use_cuda):
# TODO: set a function in wavernn code base for model setup and call it here.
@ -136,33 +134,27 @@ class Synthesizer(object):
def tts(self, text):
wavs = []
sens = self.split_into_sentences(text)
print(sens)
if not sens:
sens = [text+'.']
for sen in sens:
if len(sen) < 3:
continue
sen = sen.strip()
print(sen)
# preprocess the given text
inputs = text_to_seqvec(text, self.tts_config, self.use_cuda)
# synthesize voice
decoder_output, postnet_output, alignments, stop_tokens = run_model(
self.tts_model, inputs, self.tts_config, False, None, None)
# convert outputs to numpy
postnet_output, decoder_output, alignment = parse_outputs(
postnet_output, decoder_output, alignments)
seq = np.array(self.input_adapter(sen))
if self.use_phonemes:
text_hat = sequence_to_phoneme(seq)
print(text_hat)
chars_var = torch.from_numpy(seq).unsqueeze(0).long()
if self.use_cuda:
chars_var = chars_var.cuda()
decoder_out, postnet_out, alignments, stop_tokens = self.tts_model.inference(
chars_var)
postnet_out = postnet_out[0].data.cpu().numpy()
if self.tts_config.model == "Tacotron":
wav = self.ap.inv_spectrogram(postnet_out.T)
elif self.tts_config.model == "Tacotron2":
if self.wavernn:
wav = self.wavernn.generate(torch.FloatTensor(postnet_out.T).unsqueeze(0).cuda(), batched=self.config.is_wavernn_batched, target=11000, overlap=550)
postnet_output = postnet_output[0].data.cpu().numpy()
wav = self.wavernn.generate(torch.FloatTensor(postnet_output.T).unsqueeze(0).cuda(), batched=self.config.is_wavernn_batched, target=11000, overlap=550)
else:
wav = self.ap.inv_mel_spectrogram(postnet_out.T)
wav = inv_spectrogram(postnet_output, self.ap, self.tts_config)
# trim silence
wav = trim_silence(wav, self.ap)
wavs += list(wav)
wavs += [0] * 10000

View File

@ -50,7 +50,7 @@ def parse_outputs(postnet_output, decoder_output, alignments):
return postnet_output, decoder_output, alignment
def trim_silence(wav):
def trim_silence(wav, ap):
return wav[:ap.find_endpoint(wav)]
@ -114,5 +114,5 @@ def synthesis(model,
wav = inv_spectrogram(postnet_output, ap, CONFIG)
# trim silence
if do_trim_silence:
wav = trim_silence(wav)
wav = trim_silence(wav, ap)
return wav, alignment, decoder_output, postnet_output, stop_tokens