Update `align_tts` for trainer_v2

pull/847/head
Eren Gölge 2021-09-30 14:18:10 +00:00
parent 8ada870a57
commit d9df33f837
2 changed files with 41 additions and 9 deletions

View File

@ -103,7 +103,7 @@ class AlignTTS(BaseTTS):
def __init__(self, config: Coqpit):
super().__init__()
super().__init__(config)
self.config = config
self.phase = -1
self.length_scale = (
@ -360,9 +360,7 @@ class AlignTTS(BaseTTS):
return outputs, loss_dict
def train_log(
self, ap: AudioProcessor, batch: dict, outputs: dict
) -> Tuple[Dict, Dict]: # pylint: disable=no-self-use
def _create_logs(self, batch, outputs, ap):
model_outputs = outputs["model_outputs"]
alignments = outputs["alignments"]
mel_input = batch["mel_input"]
@ -381,11 +379,22 @@ class AlignTTS(BaseTTS):
train_audio = ap.inv_melspectrogram(pred_spec.T)
return figures, {"audio": train_audio}
def train_log(
self, batch: dict, outputs: dict, logger: "Logger", assets: dict, steps: int
) -> None: # pylint: disable=no-self-use
ap = assets["audio_processor"]
figures, audios = self._create_logs(batch, outputs, ap)
logger.train_figures(steps, figures)
logger.train_audios(steps, audios, ap.sample_rate)
def eval_step(self, batch: dict, criterion: nn.Module):
return self.train_step(batch, criterion)
def eval_log(self, ap: AudioProcessor, batch: dict, outputs: dict):
return self.train_log(ap, batch, outputs)
def eval_log(self, batch: dict, outputs: dict, logger: "Logger", assets: dict, steps: int) -> None:
ap = assets["audio_processor"]
figures, audios = self._create_logs(batch, outputs, ap)
logger.eval_figures(steps, figures)
logger.eval_audios(steps, audios, ap.sample_rate)
def load_checkpoint(
self, config, checkpoint_path, eval=False

View File

@ -1,9 +1,14 @@
import os
from TTS.trainer import Trainer, TrainingArgs, init_training
from TTS.trainer import Trainer, TrainingArgs
from TTS.tts.configs import AlignTTSConfig, BaseDatasetConfig
from TTS.tts.datasets import load_tts_samples
from TTS.tts.models.align_tts import AlignTTS
from TTS.utils.audio import AudioProcessor
output_path = os.path.dirname(os.path.abspath(__file__))
# init configs
dataset_config = BaseDatasetConfig(
name="ljspeech", meta_file_train="metadata.csv", path=os.path.join(output_path, "../LJSpeech-1.1/")
)
@ -25,6 +30,24 @@ config = AlignTTSConfig(
output_path=output_path,
datasets=[dataset_config],
)
args, config, output_path, _, c_logger, dashboard_logger = init_training(TrainingArgs(), config)
trainer = Trainer(args, config, output_path, c_logger, dashboard_logger)
# init audio processor
ap = AudioProcessor(**config.audio.to_dict())
# load training samples
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True)
# init model
model = AlignTTS(config)
# init the trainer and 🚀
trainer = Trainer(
TrainingArgs(),
config,
output_path,
model=model,
train_samples=train_samples,
eval_samples=eval_samples,
training_assets={"audio_processor": ap},
)
trainer.fit()