Move `TorchSTFT` to `utils.audio`

pull/506/head
Eren Gölge 2021-06-21 16:50:37 +02:00
parent 5b89cb4fec
commit d700845b10
2 changed files with 79 additions and 78 deletions

View File

@ -3,12 +3,89 @@ import numpy as np
import scipy.io.wavfile
import scipy.signal
import soundfile as sf
import torch
from torch import nn
from TTS.tts.utils.data import StandardScaler
# import pyworld as pw
class TorchSTFT(nn.Module): # pylint: disable=abstract-method
"""TODO: Merge this with audio.py"""
def __init__(
self,
n_fft,
hop_length,
win_length,
pad_wav=False,
window="hann_window",
sample_rate=None,
mel_fmin=0,
mel_fmax=None,
n_mels=80,
use_mel=False,
):
super().__init__()
self.n_fft = n_fft
self.hop_length = hop_length
self.win_length = win_length
self.pad_wav = pad_wav
self.sample_rate = sample_rate
self.mel_fmin = mel_fmin
self.mel_fmax = mel_fmax
self.n_mels = n_mels
self.use_mel = use_mel
self.window = nn.Parameter(getattr(torch, window)(win_length), requires_grad=False)
self.mel_basis = None
if use_mel:
self._build_mel_basis()
def __call__(self, x):
"""Compute spectrogram frames by torch based stft.
Args:
x (Tensor): input waveform
Returns:
Tensor: spectrogram frames.
Shapes:
x: [B x T] or [B x 1 x T]
"""
if x.ndim == 2:
x = x.unsqueeze(1)
if self.pad_wav:
padding = int((self.n_fft - self.hop_length) / 2)
x = torch.nn.functional.pad(x, (padding, padding), mode="reflect")
# B x D x T x 2
o = torch.stft(
x.squeeze(1),
self.n_fft,
self.hop_length,
self.win_length,
self.window,
center=True,
pad_mode="reflect", # compatible with audio.py
normalized=False,
onesided=True,
return_complex=False,
)
M = o[:, :, :, 0]
P = o[:, :, :, 1]
S = torch.sqrt(torch.clamp(M ** 2 + P ** 2, min=1e-8))
if self.use_mel:
S = torch.matmul(self.mel_basis.to(x), S)
return S
def _build_mel_basis(self):
mel_basis = librosa.filters.mel(
self.sample_rate, self.n_fft, n_mels=self.n_mels, fmin=self.mel_fmin, fmax=self.mel_fmax
)
self.mel_basis = torch.from_numpy(mel_basis).float()
# pylint: disable=too-many-public-methods
class AudioProcessor(object):
"""Audio Processor for TTS used by all the data pipelines.

View File

@ -1,88 +1,12 @@
from typing import Dict, Union
import librosa
import torch
from torch import nn
from torch.nn import functional as F
from TTS.utils.audio import TorchSTFT
from TTS.vocoder.utils.distribution import discretized_mix_logistic_loss, gaussian_loss
class TorchSTFT(nn.Module): # pylint: disable=abstract-method
"""TODO: Merge this with audio.py"""
def __init__(
self,
n_fft,
hop_length,
win_length,
pad_wav=False,
window="hann_window",
sample_rate=None,
mel_fmin=0,
mel_fmax=None,
n_mels=80,
use_mel=False,
):
super().__init__()
self.n_fft = n_fft
self.hop_length = hop_length
self.win_length = win_length
self.pad_wav = pad_wav
self.sample_rate = sample_rate
self.mel_fmin = mel_fmin
self.mel_fmax = mel_fmax
self.n_mels = n_mels
self.use_mel = use_mel
self.window = nn.Parameter(getattr(torch, window)(win_length), requires_grad=False)
self.mel_basis = None
if use_mel:
self._build_mel_basis()
def __call__(self, x):
"""Compute spectrogram frames by torch based stft.
Args:
x (Tensor): input waveform
Returns:
Tensor: spectrogram frames.
Shapes:
x: [B x T] or [B x 1 x T]
"""
if x.ndim == 2:
x = x.unsqueeze(1)
if self.pad_wav:
padding = int((self.n_fft - self.hop_length) / 2)
x = torch.nn.functional.pad(x, (padding, padding), mode="reflect")
# B x D x T x 2
o = torch.stft(
x.squeeze(1),
self.n_fft,
self.hop_length,
self.win_length,
self.window,
center=True,
pad_mode="reflect", # compatible with audio.py
normalized=False,
onesided=True,
return_complex=False,
)
M = o[:, :, :, 0]
P = o[:, :, :, 1]
S = torch.sqrt(torch.clamp(M ** 2 + P ** 2, min=1e-8))
if self.use_mel:
S = torch.matmul(self.mel_basis.to(x), S)
return S
def _build_mel_basis(self):
mel_basis = librosa.filters.mel(
self.sample_rate, self.n_fft, n_mels=self.n_mels, fmin=self.mel_fmin, fmax=self.mel_fmax
)
self.mel_basis = torch.from_numpy(mel_basis).float()
#################################
# GENERATOR LOSSES
#################################
@ -275,7 +199,7 @@ def _apply_D_loss(scores_fake, scores_real, loss_func):
loss += total_loss
real_loss += real_loss
fake_loss += fake_loss
# normalize loss values with number of scales
# normalize loss values with number of scales (discriminators)
loss /= len(scores_fake)
real_loss /= len(scores_real)
fake_loss /= len(scores_fake)