linter changes and train_tts_test and train_vocoder_test fixes

pull/10/head
erogol 2020-09-07 13:46:35 +02:00
parent 3131308baa
commit d4319fe42d
7 changed files with 34 additions and 184 deletions

View File

@ -670,12 +670,12 @@ if __name__ == '__main__':
args = parser.parse_args()
if args.continue_path != '':
print(f" > Training continues for {args.continue_path}")
args.output_path = args.continue_path
args.config_path = os.path.join(args.continue_path, 'config.json')
list_of_files = glob.glob(args.continue_path + "/*.pth.tar") # * means all if need specific format then *.csv
latest_model_file = max(list_of_files, key=os.path.getctime)
args.restore_path = latest_model_file
print(f" > Training continues for {args.restore_path}")
# setup output paths and read configs
c = load_config(args.config_path)

View File

@ -251,4 +251,4 @@ def vctk(root_path, meta_files=None, wavs_path='wav48'):
file_id + '.wav')
items.append([text, wav_file, speaker_id])
return items
return items

View File

@ -7,7 +7,7 @@ import pyworld as pw
from mozilla_voice_tts.tts.utils.data import StandardScaler
#pylint: disable=too-many-public-methods
class AudioProcessor(object):
def __init__(self,
sample_rate=None,

View File

@ -1,6 +1,5 @@
import re
import json
from shutil import copyfile
class AttrDict(dict):
"""A custom dict which converts dict keys

View File

@ -1,161 +1,7 @@
<<<<<<< HEAD:tests/inputs/test_train_config.json
{
"model": "Tacotron2",
"run_name": "test_sample_dataset_run",
"run_description": "sample dataset test run",
// AUDIO PARAMETERS
"audio":{
// stft parameters
"fft_size": 1024, // number of stft frequency levels. Size of the linear spectogram frame.
"win_length": 1024, // stft window length in ms.
"hop_length": 256, // stft window hop-lengh in ms.
"frame_length_ms": null, // stft window length in ms.If null, 'win_length' is used.
"frame_shift_ms": null, // stft window hop-lengh in ms. If null, 'hop_length' is used.
// Audio processing parameters
"sample_rate": 22050, // DATASET-RELATED: wav sample-rate.
"preemphasis": 0.0, // pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis.
"ref_level_db": 20, // reference level db, theoretically 20db is the sound of air.
// Silence trimming
"do_trim_silence": true,// enable trimming of slience of audio as you load it. LJspeech (true), TWEB (false), Nancy (true)
"trim_db": 60, // threshold for timming silence. Set this according to your dataset.
// Griffin-Lim
"power": 1.5, // value to sharpen wav signals after GL algorithm.
"griffin_lim_iters": 60,// #griffin-lim iterations. 30-60 is a good range. Larger the value, slower the generation.
// MelSpectrogram parameters
"num_mels": 80, // size of the mel spec frame.
"mel_fmin": 0.0, // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!!
"mel_fmax": 8000.0, // maximum freq level for mel-spec. Tune for dataset!!
"spec_gain": 20.0,
// Normalization parameters
"signal_norm": true, // normalize spec values. Mean-Var normalization if 'stats_path' is defined otherwise range normalization defined by the other params.
"min_level_db": -100, // lower bound for normalization
"symmetric_norm": true, // move normalization to range [-1, 1]
"max_norm": 4.0, // scale normalization to range [-max_norm, max_norm] or [0, max_norm]
"clip_norm": true, // clip normalized values into the range.
"stats_path": null // DO NOT USE WITH MULTI_SPEAKER MODEL. scaler stats file computed by 'compute_statistics.py'. If it is defined, mean-std based notmalization is used and other normalization params are ignored
},
// VOCABULARY PARAMETERS
// if custom character set is not defined,
// default set in symbols.py is used
// "characters":{
// "pad": "_",
// "eos": "~",
// "bos": "^",
// "characters": "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz!'(),-.:;? ",
// "punctuations":"!'(),-.:;? ",
// "phonemes":"iyɨʉɯuɪʏʊeøɘəɵɤoɛœɜɞʌɔæɐaɶɑɒᵻʘɓǀɗǃʄǂɠǁʛpbtdʈɖcɟkɡʔɴŋɲɳnɱmʙrʀⱱɾɽɸβfvθðszʃʒʂʐçʝxɣχʁħʕhɦɬɮʋɹɻjɰlɭʎʟˈˌːˑʍwɥʜʢʡɕʑɺɧɚ˞ɫ"
// },
// DISTRIBUTED TRAINING
"distributed":{
"backend": "nccl",
"url": "tcp:\/\/localhost:54321"
},
"reinit_layers": [], // give a list of layer names to restore from the given checkpoint. If not defined, it reloads all heuristically matching layers.
// TRAINING
"batch_size": 1, // Batch size for training. Lower values than 32 might cause hard to learn attention. It is overwritten by 'gradual_training'.
"eval_batch_size":1,
"r": 7, // Number of decoder frames to predict per iteration. Set the initial values if gradual training is enabled.
"gradual_training": [[0, 7, 4]], //set gradual training steps [first_step, r, batch_size]. If it is null, gradual training is disabled. For Tacotron, you might need to reduce the 'batch_size' as you proceeed.
"loss_masking": true, // enable / disable loss masking against the sequence padding.
"ga_alpha": 10.0, // weight for guided attention loss. If > 0, guided attention is enabled.
"apex_amp_level": null,
// VALIDATION
"run_eval": true,
"test_delay_epochs": 0, //Until attention is aligned, testing only wastes computation time.
"test_sentences_file": null, // set a file to load sentences to be used for testing. If it is null then we use default english sentences.
// OPTIMIZER
"noam_schedule": false, // use noam warmup and lr schedule.
"grad_clip": 1.0, // upper limit for gradients for clipping.
"epochs": 1, // total number of epochs to train.
"lr": 0.0001, // Initial learning rate. If Noam decay is active, maximum learning rate.
"wd": 0.000001, // Weight decay weight.
"warmup_steps": 4000, // Noam decay steps to increase the learning rate from 0 to "lr"
"seq_len_norm": false, // Normalize eash sample loss with its length to alleviate imbalanced datasets. Use it if your dataset is small or has skewed distribution of sequence lengths.
// TACOTRON PRENET
"memory_size": -1, // ONLY TACOTRON - size of the memory queue used fro storing last decoder predictions for auto-regression. If < 0, memory queue is disabled and decoder only uses the last prediction frame.
"prenet_type": "bn", // "original" or "bn".
"prenet_dropout": false, // enable/disable dropout at prenet.
// TACOTRON ATTENTION
"attention_type": "original", // 'original' or 'graves'
"attention_heads": 4, // number of attention heads (only for 'graves')
"attention_norm": "sigmoid", // softmax or sigmoid.
"windowing": false, // Enables attention windowing. Used only in eval mode.
"use_forward_attn": false, // if it uses forward attention. In general, it aligns faster.
"forward_attn_mask": false, // Additional masking forcing monotonicity only in eval mode.
"transition_agent": false, // enable/disable transition agent of forward attention.
"location_attn": true, // enable_disable location sensitive attention. It is enabled for TACOTRON by default.
"bidirectional_decoder": false, // use https://arxiv.org/abs/1907.09006. Use it, if attention does not work well with your dataset.
"double_decoder_consistency": true, // use DDC explained here https://erogol.com/solving-attention-problems-of-tts-models-with-double-decoder-consistency-draft/
"ddc_r": 7, // reduction rate for coarse decoder.
// STOPNET
"stopnet": true, // Train stopnet predicting the end of synthesis.
"separate_stopnet": true, // Train stopnet seperately if 'stopnet==true'. It prevents stopnet loss to influence the rest of the model. It causes a better model, but it trains SLOWER.
// TENSORBOARD and LOGGING
"print_step": 1, // Number of steps to log training on console.
"tb_plot_step": 100, // Number of steps to plot TB training figures.
"print_eval": false, // If True, it prints intermediate loss values in evalulation.
"save_step": 10000, // Number of training steps expected to save traninpg stats and checkpoints.
"checkpoint": true, // If true, it saves checkpoints per "save_step"
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
// DATA LOADING
"text_cleaner": "phoneme_cleaners",
"enable_eos_bos_chars": false, // enable/disable beginning of sentence and end of sentence chars.
"num_loader_workers": 4, // number of training data loader processes. Don't set it too big. 4-8 are good values.
"num_val_loader_workers": 4, // number of evaluation data loader processes.
"batch_group_size": 0, //Number of batches to shuffle after bucketing.
"min_seq_len": 6, // DATASET-RELATED: minimum text length to use in training
"max_seq_len": 153, // DATASET-RELATED: maximum text length
// PATHS
"output_path": "tests/train_outputs/",
// PHONEMES
"phoneme_cache_path": "tests/train_outputs/phoneme_cache/", // phoneme computation is slow, therefore, it caches results in the given folder.
"use_phonemes": true, // use phonemes instead of raw characters. It is suggested for better pronounciation.
"phoneme_language": "en-us", // depending on your target language, pick one from https://github.com/bootphon/phonemizer#languages
// MULTI-SPEAKER and GST
"use_speaker_embedding": false, // use speaker embedding to enable multi-speaker learning.
"style_wav_for_test": null, // path to style wav file to be used in TacotronGST inference.
"use_gst": false, // TACOTRON ONLY: use global style tokens
// DATASETS
"train_portion": 0.1, // dataset portion used for training. It is mainly for internal experiments.
"eval_portion": 0.1, // dataset portion used for training. It is mainly for internal experiments.
"datasets": // List of datasets. They all merged and they get different speaker_ids.
[
{
"name": "ljspeech",
"path": "tests/data/ljspeech/",
"meta_file_train": "metadata.csv",
"meta_file_val": "metadata.csv"
}
]
}
=======
{
"model": "Tacotron2",
"run_name": "ljspeech-ddc-bn",
"run_description": "tacotron2 with ddc and batch-normalization",
"run_name": "test_sample_dataset_run",
"run_description": "sample dataset test run",
// AUDIO PARAMETERS
"audio":{
@ -183,7 +29,7 @@
"num_mels": 80, // size of the mel spec frame.
"mel_fmin": 0.0, // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!!
"mel_fmax": 8000.0, // maximum freq level for mel-spec. Tune for dataset!!
"spec_gain": 20,
"spec_gain": 20.0,
// Normalization parameters
"signal_norm": true, // normalize spec values. Mean-Var normalization if 'stats_path' is defined otherwise range normalization defined by the other params.
@ -215,30 +61,31 @@
"reinit_layers": [], // give a list of layer names to restore from the given checkpoint. If not defined, it reloads all heuristically matching layers.
// TRAINING
"batch_size": 32, // Batch size for training. Lower values than 32 might cause hard to learn attention. It is overwritten by 'gradual_training'.
"eval_batch_size":16,
"batch_size": 1, // Batch size for training. Lower values than 32 might cause hard to learn attention. It is overwritten by 'gradual_training'.
"eval_batch_size":1,
"r": 7, // Number of decoder frames to predict per iteration. Set the initial values if gradual training is enabled.
"gradual_training": [[0, 7, 64], [1, 5, 64], [50000, 3, 32], [130000, 2, 32], [290000, 1, 32]], //set gradual training steps [first_step, r, batch_size]. If it is null, gradual training is disabled. For Tacotron, you might need to reduce the 'batch_size' as you proceeed.
"gradual_training": [[0, 7, 4]], //set gradual training steps [first_step, r, batch_size]. If it is null, gradual training is disabled. For Tacotron, you might need to reduce the 'batch_size' as you proceeed.
"loss_masking": true, // enable / disable loss masking against the sequence padding.
"ga_alpha": 10.0, // weight for guided attention loss. If > 0, guided attention is enabled.
"apex_amp_level": null,
// VALIDATION
"run_eval": true,
"test_delay_epochs": 10, //Until attention is aligned, testing only wastes computation time.
"test_delay_epochs": 0, //Until attention is aligned, testing only wastes computation time.
"test_sentences_file": null, // set a file to load sentences to be used for testing. If it is null then we use default english sentences.
// OPTIMIZER
"noam_schedule": false, // use noam warmup and lr schedule.
"grad_clip": 1.0, // upper limit for gradients for clipping.
"epochs": 1000, // total number of epochs to train.
"epochs": 1, // total number of epochs to train.
"lr": 0.0001, // Initial learning rate. If Noam decay is active, maximum learning rate.
"wd": 0.000001, // Weight decay weight.
"warmup_steps": 4000, // Noam decay steps to increase the learning rate from 0 to "lr"
"seq_len_norm": false, // Normalize eash sample loss with its length to alleviate imbalanced datasets. Use it if your dataset is small or has skewed distribution of sequence lengths.
// TACOTRON PRENET
"memory_size": -1, // ONLY TACOTRON - size of the memory queue used fro storing last decoder predictions for auto-regression. If < 0, memory queue is disabled and decoder only uses the last prediction frame.
"prenet_type": "bn", // "original" or "bn".
"memory_size": -1, // ONLY TACOTRON - size of the memory queue used fro storing last decoder predictions for auto-regression. If < 0, memory queue is disabled and decoder only uses the last prediction frame.
"prenet_type": "bn", // "original" or "bn".
"prenet_dropout": false, // enable/disable dropout at prenet.
// TACOTRON ATTENTION
@ -259,8 +106,8 @@
"separate_stopnet": true, // Train stopnet seperately if 'stopnet==true'. It prevents stopnet loss to influence the rest of the model. It causes a better model, but it trains SLOWER.
// TENSORBOARD and LOGGING
"print_step": 25, // Number of steps to log training on console.
"tb_plot_step:": 100, // Number of steps to plot TB training figures.
"print_step": 1, // Number of steps to log training on console.
"tb_plot_step": 100, // Number of steps to plot TB training figures.
"print_eval": false, // If True, it prints intermediate loss values in evalulation.
"save_step": 10000, // Number of training steps expected to save traninpg stats and checkpoints.
"checkpoint": true, // If true, it saves checkpoints per "save_step"
@ -276,36 +123,40 @@
"max_seq_len": 153, // DATASET-RELATED: maximum text length
// PATHS
"output_path": "/home/erogol/Models/LJSpeech/",
"output_path": "tests/train_outputs/",
// PHONEMES
"phoneme_cache_path": "/media/erogol/data_ssd2/mozilla_us_phonemes_3", // phoneme computation is slow, therefore, it caches results in the given folder.
"phoneme_cache_path": "tests/train_outputs/phoneme_cache/", // phoneme computation is slow, therefore, it caches results in the given folder.
"use_phonemes": true, // use phonemes instead of raw characters. It is suggested for better pronounciation.
"phoneme_language": "en-us", // depending on your target language, pick one from https://github.com/bootphon/phonemizer#languages
// MULTI-SPEAKER and GST
"use_external_speaker_embedding_file": false,
"external_speaker_embedding_file": null,
"use_speaker_embedding": false, // use speaker embedding to enable multi-speaker learning.
"use_gst": true, // use global style tokens
"gst": { // gst parameter if gst is enabled
"gst_style_input": null, // Condition the style input either on a
// -> wave file [path to wave] or
// -> dictionary using the style tokens {'token1': 'value', 'token2': 'value'} example {"0": 0.15, "1": 0.15, "5": -0.15}
"gst_style_input": null, // Condition the style input either on a
// -> wave file [path to wave] or
// -> dictionary using the style tokens {'token1': 'value', 'token2': 'value'} example {"0": 0.15, "1": 0.15, "5": -0.15}
// with the dictionary being len(dict) == len(gst_style_tokens).
"gst_embedding_dim": 512,
"gst_embedding_dim": 512,
"gst_num_heads": 4,
"gst_style_tokens": 10
},
},
// DATASETS
"train_portion": 0.1, // dataset portion used for training. It is mainly for internal experiments.
"eval_portion": 0.1, // dataset portion used for training. It is mainly for internal experiments.
"datasets": // List of datasets. They all merged and they get different speaker_ids.
[
{
"name": "ljspeech",
"path": "/home/erogol/Data/LJSpeech-1.1/",
"path": "tests/data/ljspeech/",
"meta_file_train": "metadata.csv",
"meta_file_val": null
"meta_file_val": "metadata.csv"
}
]
}
>>>>>>> Added support for Tacotron2 GST + abbility to condition style input with wav or tokens:config.json

View File

@ -139,6 +139,6 @@
"eval_split_size": 10,
// PATHS
"output_path": "tests/outputs/train_outputs/"
"output_path": "tests/train_outputs/"
}

View File

@ -7,9 +7,9 @@ mkdir $BASEDIR/train_outputs
# run training
CUDA_VISIBLE_DEVICES="" python mozilla_voice_tts/bin/train_vocoder.py --config_path $BASEDIR/inputs/test_vocoder_multiband_melgan_config.json
# find the training folder
LATEST_FOLDER=$(ls $BASEDIR/outputs/train_outputs/| sort | tail -1)
LATEST_FOLDER=$(ls $BASEDIR/train_outputs/| sort | tail -1)
echo $LATEST_FOLDER
# continue the previous training
CUDA_VISIBLE_DEVICES="" python mozilla_voice_tts/bin/train_vocoder.py --continue_path $BASEDIR/outputs/train_outputs/$LATEST_FOLDER
CUDA_VISIBLE_DEVICES="" python mozilla_voice_tts/bin/train_vocoder.py --continue_path $BASEDIR/train_outputs/$LATEST_FOLDER
# remove all the outputs
rm -rf $BASEDIR/train_outputs/
rm -rf $BASEDIR/train_outputs/$LATEST_FOLDER