Remove torchaudio requeriment

pull/1032/head
Edresson 2021-11-23 11:24:36 -03:00 committed by Eren Gölge
parent 2e516869a1
commit d39200e69b
4 changed files with 45 additions and 16 deletions

View File

@ -1,7 +1,10 @@
import numpy as np
import torch
import torchaudio
import torch.nn as nn
from torch import nn
# import torchaudio
from TTS.utils.audio import TorchSTFT
from TTS.utils.io import load_fsspec
@ -110,14 +113,29 @@ class ResNetSpeakerEncoder(nn.Module):
if self.use_torch_spec:
self.torch_spec = torch.nn.Sequential(
PreEmphasis(audio_config["preemphasis"]),
torchaudio.transforms.MelSpectrogram(
TorchSTFT(
n_fft=audio_config["fft_size"],
hop_length=audio_config["hop_length"],
win_length=audio_config["win_length"],
sample_rate=audio_config["sample_rate"],
window="hamming_window",
mel_fmin=0.0,
mel_fmax=None,
use_htk=True,
do_amp_to_db=False,
n_mels=audio_config["num_mels"],
power=2.0,
use_mel=True,
mel_norm=None
),
'''torchaudio.transforms.MelSpectrogram(
sample_rate=audio_config["sample_rate"],
n_fft=audio_config["fft_size"],
win_length=audio_config["win_length"],
hop_length=audio_config["hop_length"],
window_fn=torch.hamming_window,
n_mels=audio_config["num_mels"],
),
),'''
)
else:
self.torch_spec = None

View File

@ -4,7 +4,7 @@ from itertools import chain
from typing import Dict, List, Tuple
import torch
import torchaudio
# import torchaudio
from coqpit import Coqpit
from torch import nn
from torch.cuda.amp.autocast_mode import autocast
@ -395,7 +395,7 @@ class Vits(BaseTTS):
if config.use_speaker_encoder_as_loss:
if not config.speaker_encoder_model_path or not config.speaker_encoder_config_path:
raise RuntimeError(
" [!] To use the speaker encoder loss you need to specify speaker_encoder_model_path and speaker_encoder_config_path !!"
" [!] To use the speaker consistency loss (SCL) you need to specify speaker_encoder_model_path and speaker_encoder_config_path !!"
)
self.speaker_manager.init_speaker_encoder(
config.speaker_encoder_model_path, config.speaker_encoder_config_path
@ -410,14 +410,17 @@ class Vits(BaseTTS):
hasattr(self.speaker_encoder, "audio_config")
and self.audio_config["sample_rate"] != self.speaker_encoder.audio_config["sample_rate"]
):
self.audio_transform = torchaudio.transforms.Resample(
raise RuntimeError(
" [!] To use the speaker consistency loss (SCL) you need to have the TTS model sampling rate ({}) equal to the speaker encoder sampling rate ({}) !".format(self.audio_config["sample_rate"], self.speaker_encoder.audio_config["sample_rate"])
)
'''self.audio_transform = torchaudio.transforms.Resample(
orig_freq=self.audio_config["sample_rate"],
new_freq=self.speaker_encoder.audio_config["sample_rate"],
)
else:
self.audio_transform = None
)
else:
self.audio_transform = None'''
else:
self.audio_transform = None
# self.audio_transform = None
self.speaker_encoder = None
def _init_speaker_embedding(self, config):
@ -655,8 +658,8 @@ class Vits(BaseTTS):
wavs_batch = torch.cat((wav_seg, o), dim=0).squeeze(1)
# resample audio to speaker encoder sample_rate
if self.audio_transform is not None:
wavs_batch = self.audio_transform(wavs_batch)
'''if self.audio_transform is not None:
wavs_batch = self.audio_transform(wavs_batch)'''
pred_embs = self.speaker_encoder.forward(wavs_batch, l2_norm=True)

View File

@ -32,6 +32,9 @@ class TorchSTFT(nn.Module): # pylint: disable=abstract-method
use_mel=False,
do_amp_to_db=False,
spec_gain=1.0,
power=None,
use_htk=False,
mel_norm="slaney"
):
super().__init__()
self.n_fft = n_fft
@ -45,6 +48,9 @@ class TorchSTFT(nn.Module): # pylint: disable=abstract-method
self.use_mel = use_mel
self.do_amp_to_db = do_amp_to_db
self.spec_gain = spec_gain
self.power = power
self.use_htk = use_htk
self.mel_norm = mel_norm
self.window = nn.Parameter(getattr(torch, window)(win_length), requires_grad=False)
self.mel_basis = None
if use_mel:
@ -83,6 +89,10 @@ class TorchSTFT(nn.Module): # pylint: disable=abstract-method
M = o[:, :, :, 0]
P = o[:, :, :, 1]
S = torch.sqrt(torch.clamp(M ** 2 + P ** 2, min=1e-8))
if self.power is not None:
S = S ** self.power
if self.use_mel:
S = torch.matmul(self.mel_basis.to(x), S)
if self.do_amp_to_db:
@ -91,7 +101,7 @@ class TorchSTFT(nn.Module): # pylint: disable=abstract-method
def _build_mel_basis(self):
mel_basis = librosa.filters.mel(
self.sample_rate, self.n_fft, n_mels=self.n_mels, fmin=self.mel_fmin, fmax=self.mel_fmax
self.sample_rate, self.n_fft, n_mels=self.n_mels, fmin=self.mel_fmin, fmax=self.mel_fmax, htk=self.use_htk, norm=self.mel_norm
)
self.mel_basis = torch.from_numpy(mel_basis).float()

View File

@ -26,5 +26,3 @@ unidic-lite==1.0.8
gruut[cs,de,es,fr,it,nl,pt,ru,sv]~=2.0.0
fsspec>=2021.04.0
pyworld
webrtcvad
torchaudio>=0.7