mirror of https://github.com/coqui-ai/TTS.git
tacotron DDC LJSpeech recipe
parent
34a42d379f
commit
d1b469935d
|
@ -132,4 +132,3 @@ notebooks/data/*
|
|||
TTS/tts/layers/glow_tts/monotonic_align/core.c
|
||||
.vscode-upload.json
|
||||
temp_build/*
|
||||
recipes/*
|
||||
|
|
|
@ -169,7 +169,8 @@ class TacotronConfig(BaseTTSConfig):
|
|||
postnet_ssim_alpha: float = 0.25
|
||||
ga_alpha: float = 5.0
|
||||
|
||||
|
||||
def check_values(self):
|
||||
if self.gradual_training:
|
||||
assert self.gradual_training[0][1] == self.r, f"[!] the first scheduled gradual training `r` must be equal to the model's `r` value. {self.gradual_training[0][1]} vs {self.r}"
|
||||
assert (
|
||||
self.gradual_training[0][1] == self.r
|
||||
), f"[!] the first scheduled gradual training `r` must be equal to the model's `r` value. {self.gradual_training[0][1]} vs {self.r}"
|
||||
|
|
|
@ -0,0 +1,13 @@
|
|||
# 🐸💬 TTS Training Recipes
|
||||
|
||||
TTS recipes intended to host bash scripts running all the necessary steps to train a TTS model with a particular dataset.
|
||||
|
||||
Run each script from the root TTS folder as follows
|
||||
|
||||
```console
|
||||
$ bash ./recipes/<dataset>/<model>/run.sh
|
||||
```
|
||||
|
||||
All the outputs are held under the recipe directory unless you change the paths in the bash script.
|
||||
|
||||
If you train a new model using TTS, feel free to share your training to expand the list of recipes.
|
|
@ -1,4 +1,5 @@
|
|||
#!/bin/bash
|
||||
# take the scripts's parent's directory to prefix all the output paths.
|
||||
RUN_DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" &> /dev/null && pwd )"
|
||||
echo $RUN_DIR
|
||||
# download LJSpeech dataset
|
||||
|
@ -12,10 +13,10 @@ tail -n 1100 LJSpeech-1.1/metadata_shuf.csv > LJSpeech-1.1/metadata_val.csv
|
|||
mv LJSpeech-1.1 $RUN_DIR/
|
||||
rm LJSpeech-1.1.tar.bz2
|
||||
# compute dataset mean and variance for normalization
|
||||
python TTS/bin/compute_statistics.py $RUN_DIR/tacotron2-DCA.json $RUN_DIR/scale_stats.npy --data_path $RUN_DIR/LJSpeech-1.1/wavs/
|
||||
python TTS/bin/compute_statistics.py $RUN_DIR/tacotron2-DDC.json $RUN_DIR/scale_stats.npy --data_path $RUN_DIR/LJSpeech-1.1/wavs/
|
||||
# training ....
|
||||
# change the GPU id if needed
|
||||
CUDA_VISIBLE_DEVICES="0" python TTS/bin/train_tacotron.py --config_path $RUN_DIR/tacotron2-DDC.json \
|
||||
--output_path $RUN_DIR \
|
||||
--coqpit.output_path $RUN_DIR \
|
||||
--coqpit.datasets.0.path $RUN_DIR/LJSpeech-1.1/ \
|
||||
--coqpit.audio.stats_path $RUN_DIR/scale_stats.npy \
|
|
@ -37,11 +37,10 @@
|
|||
"gst_num_style_tokens": 10
|
||||
},
|
||||
"model": "Tacotron2",
|
||||
"run_name": "ljspeech-dcattn",
|
||||
"run_description": "tacotron2 with dynamic convolution attention.",
|
||||
"run_name": "ljspeech-ddc",
|
||||
"run_description": "tacotron2 with double decoder consistency.",
|
||||
"batch_size": 64,
|
||||
"eval_batch_size": 16,
|
||||
"r": 2,
|
||||
"mixed_precision": true,
|
||||
"loss_masking": true,
|
||||
"decoder_loss_alpha": 0.25,
|
||||
|
@ -69,6 +68,7 @@
|
|||
"double_decoder_consistency": true,
|
||||
"ddc_r": 6,
|
||||
"attention_norm": "sigmoid",
|
||||
"r": 6,
|
||||
"gradual_training": [[0, 6, 64], [10000, 4, 32], [50000, 3, 32], [100000, 2, 32]],
|
||||
"stopnet": true,
|
||||
"separate_stopnet": true,
|
Loading…
Reference in New Issue