mirror of https://github.com/coqui-ai/TTS.git
fix pylint once again
parent
80f5e39e56
commit
d158ec0806
|
@ -28,7 +28,6 @@ from TTS.utils.generic_utils import (
|
|||
)
|
||||
from TTS.vocoder.datasets.wavernn_dataset import WaveRNNDataset
|
||||
from TTS.vocoder.datasets.preprocess import (
|
||||
find_feat_files,
|
||||
load_wav_data,
|
||||
load_wav_feat_data
|
||||
)
|
||||
|
|
|
@ -1,7 +1,6 @@
|
|||
import torch
|
||||
import numpy as np
|
||||
from torch.utils.data import Dataset
|
||||
from multiprocessing import Manager
|
||||
|
||||
|
||||
class WaveRNNDataset(Dataset):
|
||||
|
|
|
@ -17,7 +17,7 @@ def test_wavernn():
|
|||
feat_dims=80,
|
||||
compute_dims=128,
|
||||
res_out_dims=128,
|
||||
res_blocks=10,
|
||||
num_res_blocks=10,
|
||||
hop_length=256,
|
||||
sample_rate=22050,
|
||||
)
|
||||
|
|
|
@ -23,7 +23,7 @@ test_quant_feat_path = os.path.join(test_data_path, "quant")
|
|||
ok_ljspeech = os.path.exists(test_data_path)
|
||||
|
||||
|
||||
def wavernn_dataset_case(batch_size, seq_len, hop_len, pad, mode, num_workers):
|
||||
def wavernn_dataset_case(batch_size, seq_len, hop_len, pad, mode, mulaw, num_workers):
|
||||
""" run dataloader with given parameters and check conditions """
|
||||
ap = AudioProcessor(**C.audio)
|
||||
|
||||
|
@ -42,6 +42,7 @@ def wavernn_dataset_case(batch_size, seq_len, hop_len, pad, mode, num_workers):
|
|||
hop_len=hop_len,
|
||||
pad=pad,
|
||||
mode=mode,
|
||||
mulaw=mulaw
|
||||
)
|
||||
# sampler = DistributedSampler(dataset) if num_gpus > 1 else None
|
||||
loader = DataLoader(dataset,
|
||||
|
@ -78,13 +79,13 @@ def wavernn_dataset_case(batch_size, seq_len, hop_len, pad, mode, num_workers):
|
|||
def test_parametrized_wavernn_dataset():
|
||||
''' test dataloader with different parameters '''
|
||||
params = [
|
||||
[16, C.audio['hop_length'] * 10, C.audio['hop_length'], 2, 10, 0],
|
||||
[16, C.audio['hop_length'] * 10, C.audio['hop_length'], 2, "mold", 4],
|
||||
[1, C.audio['hop_length'] * 10, C.audio['hop_length'], 2, 9, 0],
|
||||
[1, C.audio['hop_length'], C.audio['hop_length'], 2, 10, 0],
|
||||
[1, C.audio['hop_length'], C.audio['hop_length'], 2, "mold", 0],
|
||||
[1, C.audio['hop_length'] * 5, C.audio['hop_length'], 4, 10, 2],
|
||||
[1, C.audio['hop_length'] * 5, C.audio['hop_length'], 2, "mold", 0],
|
||||
[16, C.audio['hop_length'] * 10, C.audio['hop_length'], 2, 10, True, 0],
|
||||
[16, C.audio['hop_length'] * 10, C.audio['hop_length'], 2, "mold", False, 4],
|
||||
[1, C.audio['hop_length'] * 10, C.audio['hop_length'], 2, 9, False, 0],
|
||||
[1, C.audio['hop_length'], C.audio['hop_length'], 2, 10, True, 0],
|
||||
[1, C.audio['hop_length'], C.audio['hop_length'], 2, "mold", False, 0],
|
||||
[1, C.audio['hop_length'] * 5, C.audio['hop_length'], 4, 10, False, 2],
|
||||
[1, C.audio['hop_length'] * 5, C.audio['hop_length'], 2, "mold", False, 0],
|
||||
]
|
||||
for param in params:
|
||||
print(param)
|
||||
|
|
Loading…
Reference in New Issue