mirror of https://github.com/coqui-ai/TTS.git
testing seq_len_norm
parent
0d17019d22
commit
ca33336ae0
|
@ -35,7 +35,7 @@ class L1LossMasked(nn.Module):
|
|||
mask = mask.expand_as(x)
|
||||
loss = functional.l1_loss(
|
||||
x * mask, target * mask, reduction='none')
|
||||
loss = loss.mul(out_weights.cuda()).sum()
|
||||
loss = loss.mul(out_weights.to(loss.device)).sum()
|
||||
else:
|
||||
mask = mask.expand_as(x)
|
||||
loss = functional.l1_loss(
|
||||
|
@ -74,7 +74,7 @@ class MSELossMasked(nn.Module):
|
|||
mask = mask.expand_as(x)
|
||||
loss = functional.mse_loss(
|
||||
x * mask, target * mask, reduction='none')
|
||||
loss = loss.mul(out_weights.cuda()).sum()
|
||||
loss = loss.mul(out_weights.to(loss.device)).sum()
|
||||
else:
|
||||
mask = mask.expand_as(x)
|
||||
loss = functional.mse_loss(
|
||||
|
|
|
@ -131,7 +131,7 @@ class L1LossMaskedTests(unittest.TestCase):
|
|||
dummy_target = T.zeros(4, 8, 128).float()
|
||||
dummy_length = (T.ones(4) * 8).long()
|
||||
output = layer(dummy_input, dummy_target, dummy_length)
|
||||
assert output.item() == 1.0, "1.0 vs {}".format(output.data[0])
|
||||
assert output.item() == 1.0, "1.0 vs {}".format(output.item())
|
||||
|
||||
# test if padded values of input makes any difference
|
||||
dummy_input = T.ones(4, 8, 128).float()
|
||||
|
@ -140,7 +140,7 @@ class L1LossMaskedTests(unittest.TestCase):
|
|||
mask = (
|
||||
(sequence_mask(dummy_length).float() - 1.0) * 100.0).unsqueeze(2)
|
||||
output = layer(dummy_input + mask, dummy_target, dummy_length)
|
||||
assert output.item() == 1.0, "1.0 vs {}".format(output.data[0])
|
||||
assert output.item() == 1.0, "1.0 vs {}".format(output.item())
|
||||
|
||||
dummy_input = T.rand(4, 8, 128).float()
|
||||
dummy_target = dummy_input.detach()
|
||||
|
@ -148,4 +148,37 @@ class L1LossMaskedTests(unittest.TestCase):
|
|||
mask = (
|
||||
(sequence_mask(dummy_length).float() - 1.0) * 100.0).unsqueeze(2)
|
||||
output = layer(dummy_input + mask, dummy_target, dummy_length)
|
||||
assert output.item() == 0, "0 vs {}".format(output.data[0])
|
||||
assert output.item() == 0, "0 vs {}".format(output.item())
|
||||
|
||||
# seq_len_norm = True
|
||||
# test input == target
|
||||
layer = L1LossMasked(seq_len_norm=True)
|
||||
dummy_input = T.ones(4, 8, 128).float()
|
||||
dummy_target = T.ones(4, 8, 128).float()
|
||||
dummy_length = (T.ones(4) * 8).long()
|
||||
output = layer(dummy_input, dummy_target, dummy_length)
|
||||
assert output.item() == 0.0
|
||||
|
||||
# test input != target
|
||||
dummy_input = T.ones(4, 8, 128).float()
|
||||
dummy_target = T.zeros(4, 8, 128).float()
|
||||
dummy_length = (T.ones(4) * 8).long()
|
||||
output = layer(dummy_input, dummy_target, dummy_length)
|
||||
assert output.item() == 1.0, "1.0 vs {}".format(output.item())
|
||||
|
||||
# test if padded values of input makes any difference
|
||||
dummy_input = T.ones(4, 8, 128).float()
|
||||
dummy_target = T.zeros(4, 8, 128).float()
|
||||
dummy_length = (T.arange(5, 9)).long()
|
||||
mask = (
|
||||
(sequence_mask(dummy_length).float() - 1.0) * 100.0).unsqueeze(2)
|
||||
output = layer(dummy_input + mask, dummy_target, dummy_length)
|
||||
assert abs(output.item() - 1.0) < 1e-5, "1.0 vs {}".format(output.item())
|
||||
|
||||
dummy_input = T.rand(4, 8, 128).float()
|
||||
dummy_target = dummy_input.detach()
|
||||
dummy_length = (T.arange(5, 9)).long()
|
||||
mask = (
|
||||
(sequence_mask(dummy_length).float() - 1.0) * 100.0).unsqueeze(2)
|
||||
output = layer(dummy_input + mask, dummy_target, dummy_length)
|
||||
assert output.item() == 0, "0 vs {}".format(output.item())
|
||||
|
|
Loading…
Reference in New Issue