mirror of https://github.com/coqui-ai/TTS.git
update tacotron model to return `model_outputs`
parent
f09ec7e3a7
commit
c9790bee2c
|
@ -255,7 +255,7 @@ class Tacotron(TacotronAbstract):
|
|||
outputs['alignments_backward'] = alignments_backward
|
||||
outputs['decoder_outputs_backward'] = decoder_outputs_backward
|
||||
outputs.update({
|
||||
'postnet_outputs': postnet_outputs,
|
||||
'model_outputs': postnet_outputs,
|
||||
'decoder_outputs': decoder_outputs,
|
||||
'alignments': alignments,
|
||||
'stop_tokens': stop_tokens
|
||||
|
@ -287,7 +287,7 @@ class Tacotron(TacotronAbstract):
|
|||
postnet_outputs = self.last_linear(postnet_outputs)
|
||||
decoder_outputs = decoder_outputs.transpose(1, 2)
|
||||
outputs = {
|
||||
'postnet_outputs': postnet_outputs,
|
||||
'model_outputs': postnet_outputs,
|
||||
'decoder_outputs': decoder_outputs,
|
||||
'alignments': alignments,
|
||||
'stop_tokens': stop_tokens
|
||||
|
@ -335,7 +335,7 @@ class Tacotron(TacotronAbstract):
|
|||
|
||||
# compute loss
|
||||
loss_dict = criterion(
|
||||
outputs['postnet_outputs'],
|
||||
outputs['model_outputs'],
|
||||
outputs['decoder_outputs'],
|
||||
mel_input,
|
||||
linear_input,
|
||||
|
@ -355,7 +355,7 @@ class Tacotron(TacotronAbstract):
|
|||
return outputs, loss_dict
|
||||
|
||||
def train_log(self, ap, batch, outputs):
|
||||
postnet_outputs = outputs['postnet_outputs']
|
||||
postnet_outputs = outputs['model_outputs']
|
||||
alignments = outputs['alignments']
|
||||
alignments_backward = outputs['alignments_backward']
|
||||
mel_input = batch['mel_input']
|
||||
|
|
|
@ -233,7 +233,7 @@ class Tacotron2(TacotronAbstract):
|
|||
outputs['alignments_backward'] = alignments_backward
|
||||
outputs['decoder_outputs_backward'] = decoder_outputs_backward
|
||||
outputs.update({
|
||||
'postnet_outputs': postnet_outputs,
|
||||
'model_outputs': postnet_outputs,
|
||||
'decoder_outputs': decoder_outputs,
|
||||
'alignments': alignments,
|
||||
'stop_tokens': stop_tokens
|
||||
|
@ -254,7 +254,7 @@ class Tacotron2(TacotronAbstract):
|
|||
x_vector = self.speaker_embedding(cond_input['speaker_ids'])[:, None]
|
||||
x_vector = torch.unsqueeze(x_vector, 0).transpose(1, 2)
|
||||
else:
|
||||
x_vector = cond_input
|
||||
x_vector = cond_input['x_vectors']
|
||||
|
||||
encoder_outputs = self._concat_speaker_embedding(
|
||||
encoder_outputs, x_vector)
|
||||
|
@ -266,7 +266,7 @@ class Tacotron2(TacotronAbstract):
|
|||
decoder_outputs, postnet_outputs, alignments = self.shape_outputs(
|
||||
decoder_outputs, postnet_outputs, alignments)
|
||||
outputs = {
|
||||
'postnet_outputs': postnet_outputs,
|
||||
'model_outputs': postnet_outputs,
|
||||
'decoder_outputs': decoder_outputs,
|
||||
'alignments': alignments,
|
||||
'stop_tokens': stop_tokens
|
||||
|
|
Loading…
Reference in New Issue