load speaker_encoder_ap and compute x_vector directly from the input file in speaker manager

pull/441/head
Eren Gölge 2021-04-23 15:52:34 +02:00
parent ad047c8195
commit c80d21f311
2 changed files with 16 additions and 0 deletions

View File

@ -6,6 +6,7 @@ import numpy as np
import torch
from TTS.speaker_encoder.utils.generic_utils import setup_model
from TTS.utils.audio import AudioProcessor
from TTS.utils.io import load_config
@ -143,6 +144,7 @@ class SpeakerManager:
self.speaker_ids = None
self.clip_ids = None
self.speaker_encoder = None
self.speaker_encoder_ap = None
if x_vectors_file_path:
self.load_x_vectors_file(x_vectors_file_path)
@ -230,6 +232,20 @@ class SpeakerManager:
self.speaker_encoder_config = load_config(config_path)
self.speaker_encoder = setup_model(self.speaker_encoder_config)
self.speaker_encoder.load_checkpoint(config_path, model_path, True)
self.speaker_encoder_ap = AudioProcessor(
**self.speaker_encoder_config.audio)
# normalize the input audio level and trim silences
self.speaker_encoder_ap.do_sound_norm = True
self.speaker_encoder_ap.do_trim_silence = True
def compute_x_vector_from_clip(self, wav_file):
waveform = self.speaker_encoder_ap.load_wav(
wav_file, sr=self.speaker_encoder_ap.sample_rate)
spec = self.speaker_encoder_ap.melspectrogram(waveform)
spec = torch.from_numpy(spec.T)
spec = spec.unsqueeze(0)
x_vector = self.speaker_encoder.compute_embedding(spec)
return x_vector
def compute_x_vector(self, feats):
if isinstance(feats, np.ndarray):