Merge pull request #519 from mueller91/dev

Speaker Encoder: New Datasets + DataLoader optimized
pull/10/head
Eren Gölge 2020-09-21 12:48:42 +02:00 committed by GitHub
commit c514628d02
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
9 changed files with 227 additions and 74 deletions

View File

@ -42,8 +42,12 @@ def setup_loader(ap, is_val=False, verbose=False):
dataset = MyDataset(ap,
meta_data_eval if is_val else meta_data_train,
voice_len=1.6,
num_utter_per_speaker=10,
num_utter_per_speaker=c.num_utters_per_speaker,
num_speakers_in_batch=c.num_speakers_in_batch,
skip_speakers=False,
storage_size=c.storage["storage_size"],
sample_from_storage_p=c.storage["sample_from_storage_p"],
additive_noise=c.storage["additive_noise"],
verbose=verbose)
# sampler = DistributedSampler(dataset) if num_gpus > 1 else None
loader = DataLoader(dataset,
@ -60,6 +64,7 @@ def train(model, criterion, optimizer, scheduler, ap, global_step):
epoch_time = 0
best_loss = float('inf')
avg_loss = 0
avg_loader_time = 0
end_time = time.time()
for _, data in enumerate(data_loader):
start_time = time.time()
@ -93,8 +98,11 @@ def train(model, criterion, optimizer, scheduler, ap, global_step):
step_time = time.time() - start_time
epoch_time += step_time
avg_loss = 0.01 * loss.item(
) + 0.99 * avg_loss if avg_loss != 0 else loss.item()
# Averaged Loss and Averaged Loader Time
avg_loss = 0.01 * loss.item() \
+ 0.99 * avg_loss if avg_loss != 0 else loss.item()
avg_loader_time = 1/c.num_loader_workers * loader_time + \
(c.num_loader_workers-1) / c.num_loader_workers * avg_loader_time if avg_loader_time != 0 else loader_time
current_lr = optimizer.param_groups[0]['lr']
if global_step % c.steps_plot_stats == 0:
@ -103,7 +111,8 @@ def train(model, criterion, optimizer, scheduler, ap, global_step):
"loss": avg_loss,
"lr": current_lr,
"grad_norm": grad_norm,
"step_time": step_time
"step_time": step_time,
"avg_loader_time": avg_loader_time
}
tb_logger.tb_train_epoch_stats(global_step, train_stats)
figures = {
@ -116,9 +125,9 @@ def train(model, criterion, optimizer, scheduler, ap, global_step):
if global_step % c.print_step == 0:
print(
" | > Step:{} Loss:{:.5f} AvgLoss:{:.5f} GradNorm:{:.5f} "
"StepTime:{:.2f} LoaderTime:{:.2f} LR:{:.6f}".format(
"StepTime:{:.2f} LoaderTime:{:.2f} AvGLoaderTime:{:.2f} LR:{:.6f}".format(
global_step, loss.item(), avg_loss, grad_norm, step_time,
loader_time, current_lr),
loader_time, avg_loader_time, current_lr),
flush=True)
# save best model

View File

@ -1,6 +1,6 @@
{
"run_name": "Model compatible to CorentinJ/Real-Time-Voice-Cloning",
"run_name": "mueller91",
"run_description": "train speaker encoder with voxceleb1, voxceleb2 and libriSpeech ",
"audio":{
// Audio processing parameters
@ -23,11 +23,11 @@
"clip_norm": true, // clip normalized values into the range.
"mel_fmin": 0.0, // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!!
"mel_fmax": 8000.0, // maximum freq level for mel-spec. Tune for dataset!!
"do_trim_silence": false, // enable trimming of slience of audio as you load it. LJspeech (false), TWEB (false), Nancy (true)
"do_trim_silence": true, // enable trimming of slience of audio as you load it. LJspeech (false), TWEB (false), Nancy (true)
"trim_db": 60 // threshold for timming silence. Set this according to your dataset.
},
"reinit_layers": [],
"loss": "ge2e", // "ge2e" to use Generalized End-to-End loss and "angleproto" to use Angular Prototypical loss (new SOTA)
"loss": "angleproto", // "ge2e" to use Generalized End-to-End loss and "angleproto" to use Angular Prototypical loss (new SOTA)
"grad_clip": 3.0, // upper limit for gradients for clipping.
"epochs": 1000, // total number of epochs to train.
"lr": 0.0001, // Initial learning rate. If Noam decay is active, maximum learning rate.
@ -35,27 +35,69 @@
"warmup_steps": 4000, // Noam decay steps to increase the learning rate from 0 to "lr"
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
"steps_plot_stats": 10, // number of steps to plot embeddings.
"num_speakers_in_batch": 32, // Batch size for training. Lower values than 32 might cause hard to learn attention. It is overwritten by 'gradual_training'.
"num_loader_workers": 4, // number of training data loader processes. Don't set it too big. 4-8 are good values.
"num_speakers_in_batch": 64, // Batch size for training. Lower values than 32 might cause hard to learn attention. It is overwritten by 'gradual_training'.
"num_utters_per_speaker": 10, //
"num_loader_workers": 8, // number of training data loader processes. Don't set it too big. 4-8 are good values.
"wd": 0.000001, // Weight decay weight.
"checkpoint": true, // If true, it saves checkpoints per "save_step"
"save_step": 1000, // Number of training steps expected to save traning stats and checkpoints.
"print_step": 1, // Number of steps to log traning on console.
"output_path": "../../checkpoints/voxceleb_librispeech/speaker_encoder/", // DATASET-RELATED: output path for all training outputs.
"print_step": 20, // Number of steps to log traning on console.
"output_path": "../../MozillaTTSOutput/checkpoints/voxceleb_librispeech/speaker_encoder/", // DATASET-RELATED: output path for all training outputs.
"model": {
"input_dim": 40,
"proj_dim": 256,
"lstm_dim": 256,
"lstm_dim": 768,
"num_lstm_layers": 3,
"use_lstm_with_projection": false
"use_lstm_with_projection": true
},
"storage": {
"sample_from_storage_p": 0.66, // the probability with which we'll sample from the DataSet in-memory storage
"storage_size": 15, // the size of the in-memory storage with respect to a single batch
"additive_noise": 1e-5 // add very small gaussian noise to the data in order to increase robustness
},
"datasets":
[
{
"name": "vctk",
"path": "../../../datasets/VCTK-Corpus-removed-silence/",
"name": "vctk_slim",
"path": "../../../audio-datasets/en/VCTK-Corpus/",
"meta_file_train": null,
"meta_file_val": null
},
{
"name": "libri_tts",
"path": "../../../audio-datasets/en/LibriTTS/train-clean-100",
"meta_file_train": null,
"meta_file_val": null
},
{
"name": "libri_tts",
"path": "../../../audio-datasets/en/LibriTTS/train-clean-360",
"meta_file_train": null,
"meta_file_val": null
},
{
"name": "libri_tts",
"path": "../../../audio-datasets/en/LibriTTS/train-other-500",
"meta_file_train": null,
"meta_file_val": null
},
{
"name": "voxceleb1",
"path": "../../../audio-datasets/en/voxceleb1/",
"meta_file_train": null,
"meta_file_val": null
},
{
"name": "voxceleb2",
"path": "../../../audio-datasets/en/voxceleb2/",
"meta_file_train": null,
"meta_file_val": null
},
{
"name": "common_voice",
"path": "../../../audio-datasets/en/MozillaCommonVoice",
"meta_file_train": "train.tsv",
"meta_file_val": "test.tsv"
}
]
}

View File

@ -1,11 +1,15 @@
import numpy
import numpy as np
import queue
import torch
import random
from torch.utils.data import Dataset
from tqdm import tqdm
class MyDataset(Dataset):
def __init__(self, ap, meta_data, voice_len=1.6, num_speakers_in_batch=64,
storage_size=1, sample_from_storage_p=0.5, additive_noise=0,
num_utter_per_speaker=10, skip_speakers=False, verbose=False):
"""
Args:
@ -24,8 +28,15 @@ class MyDataset(Dataset):
self.ap = ap
self.verbose = verbose
self.__parse_items()
self.storage = queue.Queue(maxsize=storage_size*num_speakers_in_batch)
self.sample_from_storage_p = float(sample_from_storage_p)
self.additive_noise = float(additive_noise)
if self.verbose:
print("\n > DataLoader initialization")
print(f" | > Speakers per Batch: {num_speakers_in_batch}")
print(f" | > Storage Size: {self.storage.maxsize} speakers, each with {num_utter_per_speaker} utters")
print(f" | > Sample_from_storage_p : {self.sample_from_storage_p}")
print(f" | > Noise added : {self.additive_noise}")
print(f" | > Number of instances : {len(self.items)}")
print(f" | > Sequence length: {self.seq_len}")
print(f" | > Num speakers: {len(self.speakers)}")
@ -51,21 +62,37 @@ class MyDataset(Dataset):
return sample
def __parse_items(self):
"""
Find unique speaker ids and create a dict mapping utterances from speaker id
"""
speakers = list({item[-1] for item in self.items})
self.speaker_to_utters = {}
self.speakers = []
for speaker in speakers:
speaker_utters = [item[1] for item in self.items if item[2] == speaker]
if len(speaker_utters) < self.num_utter_per_speaker and self.skip_speakers:
print(
f" [!] Skipped speaker {speaker}. Not enough utterances {self.num_utter_per_speaker} vs {len(speaker_utters)}."
)
for i in self.items:
path_ = i[1]
speaker_ = i[2]
if speaker_ in self.speaker_to_utters.keys():
self.speaker_to_utters[speaker_].append(path_)
else:
self.speakers.append(speaker)
self.speaker_to_utters[speaker] = speaker_utters
self.speaker_to_utters[speaker_] = [path_, ]
if self.skip_speakers:
self.speaker_to_utters = {k: v for (k, v) in self.speaker_to_utters.items() if
len(v) >= self.num_utter_per_speaker}
self.speakers = [k for (k, v) in self.speaker_to_utters.items()]
# def __parse_items(self):
# """
# Find unique speaker ids and create a dict mapping utterances from speaker id
# """
# speakers = list({item[-1] for item in self.items})
# self.speaker_to_utters = {}
# self.speakers = []
# for speaker in speakers:
# speaker_utters = [item[1] for item in self.items if item[2] == speaker]
# if len(speaker_utters) < self.num_utter_per_speaker and self.skip_speakers:
# print(
# f" [!] Skipped speaker {speaker}. Not enough utterances {self.num_utter_per_speaker} vs {len(speaker_utters)}."
# )
# else:
# self.speakers.append(speaker)
# self.speaker_to_utters[speaker] = speaker_utters
def __len__(self):
return int(1e10)
@ -86,7 +113,7 @@ class MyDataset(Dataset):
"""
Sample all M utterances for the given speaker.
"""
feats = []
wavs = []
labels = []
for _ in range(self.num_utter_per_speaker):
# TODO:dummy but works
@ -102,11 +129,9 @@ class MyDataset(Dataset):
break
self.speaker_to_utters[speaker].remove(utter)
offset = random.randint(0, wav.shape[0] - self.seq_len)
mel = self.ap.melspectrogram(wav[offset : offset + self.seq_len])
feats.append(torch.FloatTensor(mel))
wavs.append(wav)
labels.append(speaker)
return feats, labels
return wavs, labels
def __getitem__(self, idx):
speaker, _ = self.__sample_speaker()
@ -116,7 +141,28 @@ class MyDataset(Dataset):
labels = []
feats = []
for speaker in batch:
feats_, labels_ = self.__sample_speaker_utterances(speaker)
if random.random() < self.sample_from_storage_p and self.storage.full():
# sample from storage (if full), ignoring the speaker
wavs_, labels_ = random.choice(self.storage.queue)
else:
# don't sample from storage, but from HDD
wavs_, labels_ = self.__sample_speaker_utterances(speaker)
# if storage is full, remove an item
if self.storage.full():
_ = self.storage.get_nowait()
# put the newly loaded item into storage
self.storage.put_nowait((wavs_, labels_))
# add random gaussian noise
if self.additive_noise > 0:
noises_ = [numpy.random.normal(0, self.additive_noise, size=len(w)) for w in wavs_]
wavs_ = [wavs_[i] + noises_[i] for i in range(len(wavs_))]
# get a random subset of each of the wavs and convert to MFCC.
offsets_ = [random.randint(0, wav.shape[0] - self.seq_len) for wav in wavs_]
mels_ = [self.ap.melspectrogram(wavs_[i][offsets_[i]: offsets_[i] + self.seq_len]) for i in range(len(wavs_))]
feats_ = [torch.FloatTensor(mel) for mel in mels_]
labels.append(labels_)
feats.extend(feats_)
feats = torch.stack(feats)

View File

@ -23,7 +23,7 @@ def save_checkpoint(model, optimizer, model_loss, out_path,
def save_best_model(model, optimizer, model_loss, best_loss, out_path,
current_step):
if model_loss < best_loss:
if model_loss < best_loss and current_step > 1000:
new_state_dict = model.state_dict()
state = {
'model': new_state_dict,
@ -35,7 +35,7 @@ def save_best_model(model, optimizer, model_loss, best_loss, out_path,
best_loss = model_loss
bestmodel_path = 'best_model.pth.tar'
bestmodel_path = os.path.join(out_path, bestmodel_path)
print("\n > BEST MODEL ({0:.5f}) : {1:}".format(
model_loss, bestmodel_path))
print("\n > NEW BEST MODEL ({0:.5f}) : {1:}".format(
model_loss, os.path.abspath(bestmodel_path)))
torch.save(state, bestmodel_path)
return best_loss

View File

@ -2,6 +2,10 @@ import os
from glob import glob
import re
import sys
from pathlib import Path
from tqdm import tqdm
from TTS.tts.utils.generic_utils import split_dataset
@ -14,8 +18,8 @@ def load_meta_data(datasets):
meta_file_train = dataset['meta_file_train']
meta_file_val = dataset['meta_file_val']
preprocessor = get_preprocessor_by_name(name)
meta_data_train = preprocessor(root_path, meta_file_train)
print(f" | > Found {len(meta_data_train)} files in {Path(root_path).resolve()}")
if meta_file_val is None:
meta_data_eval, meta_data_train = split_dataset(meta_data_train)
else:
@ -167,8 +171,8 @@ def common_voice(root_path, meta_file):
cols = line.split("\t")
text = cols[2]
speaker_name = cols[0]
wav_file = os.path.join(root_path, "clips", cols[1] + ".wav")
items.append([text, wav_file, speaker_name])
wav_file = os.path.join(root_path, "clips", cols[1].replace(".mp3", ".wav"))
items.append([text, wav_file, 'MCV_' + speaker_name])
return items
@ -187,7 +191,7 @@ def libri_tts(root_path, meta_files=None):
cols = line.split('\t')
wav_file = os.path.join(_root_path, cols[0] + '.wav')
text = cols[1]
items.append([text, wav_file, speaker_name])
items.append([text, wav_file, 'LTTS_' + speaker_name])
for item in items:
assert os.path.exists(
item[1]), f" [!] wav files don't exist - {item[1]}"
@ -235,8 +239,7 @@ def vctk(root_path, meta_files=None, wavs_path='wav48'):
"""homepages.inf.ed.ac.uk/jyamagis/release/VCTK-Corpus.tar.gz"""
test_speakers = meta_files
items = []
meta_files = glob(f"{os.path.join(root_path,'txt')}/**/*.txt",
recursive=True)
meta_files = glob(f"{os.path.join(root_path,'txt')}/**/*.txt", recursive=True)
for meta_file in meta_files:
_, speaker_id, txt_file = os.path.relpath(meta_file,
root_path).split(os.sep)
@ -249,6 +252,70 @@ def vctk(root_path, meta_files=None, wavs_path='wav48'):
text = file_text.readlines()[0]
wav_file = os.path.join(root_path, wavs_path, speaker_id,
file_id + '.wav')
items.append([text, wav_file, speaker_id])
items.append([text, wav_file, 'VCTK_' + speaker_id])
return items
def vctk_slim(root_path, meta_files=None, wavs_path='wav48'):
"""homepages.inf.ed.ac.uk/jyamagis/release/VCTK-Corpus.tar.gz"""
items = []
txt_files = glob(f"{os.path.join(root_path,'txt')}/**/*.txt", recursive=True)
for text_file in txt_files:
_, speaker_id, txt_file = os.path.relpath(text_file,
root_path).split(os.sep)
file_id = txt_file.split('.')[0]
if isinstance(meta_files, list): # if is list ignore this speakers ids
if speaker_id in meta_files:
continue
wav_file = os.path.join(root_path, wavs_path, speaker_id,
file_id + '.wav')
items.append([None, wav_file, 'VCTK_' + speaker_id])
return items
# ======================================== VOX CELEB ===========================================
def voxceleb2(root_path, meta_file=None):
"""
:param meta_file Used only for consistency with load_meta_data api
"""
return _voxcel_x(root_path, meta_file, voxcel_idx="2")
def voxceleb1(root_path, meta_file=None):
"""
:param meta_file Used only for consistency with load_meta_data api
"""
return _voxcel_x(root_path, meta_file, voxcel_idx="1")
def _voxcel_x(root_path, meta_file, voxcel_idx):
assert voxcel_idx in ["1", "2"]
expected_count = 148_000 if voxcel_idx == "1" else 1_000_000
voxceleb_path = Path(root_path)
cache_to = voxceleb_path / f"metafile_voxceleb{voxcel_idx}.csv"
cache_to.parent.mkdir(exist_ok=True)
# if not exists meta file, crawl recursively for 'wav' files
if meta_file is not None:
with open(str(meta_file), 'r') as f:
return [x.strip().split('|') for x in f.readlines()]
elif not cache_to.exists():
cnt = 0
meta_data = ""
wav_files = voxceleb_path.rglob("**/*.wav")
for path in tqdm(wav_files, desc=f"Building VoxCeleb {voxcel_idx} Meta file ... this needs to be done only once.",
total=expected_count):
speaker_id = str(Path(path).parent.parent.stem)
assert speaker_id.startswith('id')
text = None # VoxCel does not provide transciptions, and they are not needed for training the SE
meta_data += f"{text}|{path}|voxcel{voxcel_idx}_{speaker_id}\n"
cnt += 1
with open(str(cache_to), 'w') as f:
f.write(meta_data)
if cnt < expected_count:
raise ValueError(f"Found too few instances for Voxceleb. Should be around {expected_count}, is: {cnt}")
with open(str(cache_to), 'r') as f:
return [x.strip().split('|') for x in f.readlines()]

View File

@ -7,11 +7,9 @@ from TTS.utils.generic_utils import check_argument
def split_dataset(items):
is_multi_speaker = False
speakers = [item[-1] for item in items]
is_multi_speaker = len(set(speakers)) > 1
eval_split_size = 500 if len(items) * 0.01 > 500 else int(
len(items) * 0.01)
eval_split_size = min(500, int(len(items) * 0.01))
assert eval_split_size > 0, " [!] You do not have enough samples to train. You need at least 100 samples."
np.random.seed(0)
np.random.shuffle(items)
@ -142,6 +140,11 @@ def check_config(c):
check_argument('do_trim_silence', c['audio'], restricted=True, val_type=bool)
check_argument('trim_db', c['audio'], restricted=True, val_type=int)
# storage parameters
check_argument('sample_from_storage_p', c['storage'], restricted=True, val_type=float, min_val=0.0, max_val=1.0)
check_argument('storage_size', c['storage'], restricted=True, val_type=int, min_val=1, max_val=100)
check_argument('additive_noise', c['storage'], restricted=True, val_type=float, min_val=0.0, max_val=1.0)
# training parameters
check_argument('batch_size', c, restricted=True, val_type=int, min_val=1)
check_argument('eval_batch_size', c, restricted=True, val_type=int, min_val=1)

View File

@ -50,7 +50,7 @@ def save_best_model(target_loss, best_loss, model, optimizer, current_step, epoc
if target_loss < best_loss:
file_name = 'best_model.pth.tar'
checkpoint_path = os.path.join(output_folder, file_name)
print(" > BEST MODEL : {}".format(checkpoint_path))
print(" >> BEST MODEL : {}".format(checkpoint_path))
save_model(model, optimizer, current_step, epoch, r, checkpoint_path, model_loss=target_loss, **kwargs)
best_loss = target_loss
return best_loss

View File

@ -1,10 +1,6 @@
client_id path sentence up_votes down_votes age gender accent
aa7af576605fee2c78c26b85497c64cb9c9fd97228071f8666d9f49f15bce01899bbb930fa60b76d212091d779d83b92e0b54c73cbb21d2c7e1eedc817e41cb3 21fce545b24d9a5af0403b949e95e8dd3c10c4ff3e371f14e4d5b4ebf588670b7c9e618285fc872d94a89ed7f0217d9019fe5de33f1577b49dcd518eacf63c4b Man sollte den Länderfinanzausgleich durch einen Bundesliga-Soli ersetzen. 2 0 fourties male germany
aa7af576605fee2c78c26b85497c64cb9c9fd97228071f8666d9f49f15bce01899bbb930fa60b76d212091d779d83b92e0b54c73cbb21d2c7e1eedc817e41cb3 42758baa4e91ef6b82b78b11a04bc5117a035a8d3bc42c33c0bb3084909af17043a194cfd8cd9839f0d6ef1ea5413acda5de5d1936abcc8ca073e2da7f9488ea Folgende Lektüre kann ich Ihnen zum Thema Kognitionspsychologie empfehlen. 2 0 fourties male germany
aa7af576605fee2c78c26b85497c64cb9c9fd97228071f8666d9f49f15bce01899bbb930fa60b76d212091d779d83b92e0b54c73cbb21d2c7e1eedc817e41cb3 478f172c2dbda6675247e9674ade79a5b49efeefb7c9e99040dcc69a847a01d69398cf180570859b0cdb6fc887717e04cd8b149c723d48d00b5d18f41314667c Touristen winkten den Leuten am Ufer zu. 2 0 fourties male germany
aa7af576605fee2c78c26b85497c64cb9c9fd97228071f8666d9f49f15bce01899bbb930fa60b76d212091d779d83b92e0b54c73cbb21d2c7e1eedc817e41cb3 4854368d6d21cb44103e432b5332f31e8d14030582a40850501bcf9377d699314a5ff27a8206fa89254ddde7f3f1c65d33836f3dfcfa16bcabec08537f2b5f08 Valentin hat das Handtuch geworfen. 2 0 fourties male germany
aa7af576605fee2c78c26b85497c64cb9c9fd97228071f8666d9f49f15bce01899bbb930fa60b76d212091d779d83b92e0b54c73cbb21d2c7e1eedc817e41cb3 a841a9f3e032495dd47560e65fba99eeacb3618c07de8b1351c20188e5b71e33cc52f73315f721a3a24b65763c65bb52fbf3ae052eb5774e834dcb57f296db5c Ohne Gehörschutz bei der Arbeit wäre Klaus wohl nach zwei Wochen taub. 2 0 fourties male germany
aa7af576605fee2c78c26b85497c64cb9c9fd97228071f8666d9f49f15bce01899bbb930fa60b76d212091d779d83b92e0b54c73cbb21d2c7e1eedc817e41cb3 03ab970a5bf5410bc3260b073cce1c7f49c688ace83dc8836b1c0f79a09fea45a27725c769f4a9d2e6181defd016d22642789d7ac51da252b42958a9192bd4c7 Gerrit erinnerte sich daran, dass er einst einen Eid geschworen hatte. 2 0 fourties male germany
aa7af576605fee2c78c26b85497c64cb9c9fd97228071f8666d9f49f15bce01899bbb930fa60b76d212091d779d83b92e0b54c73cbb21d2c7e1eedc817e41cb3 c4a94df443ad5f2c7241413ef7145d5f0de41ae929759073917fe96166da3c7d3a612c920ed7b0f3d5950a38d6205e9dba24af5bfb27e390a220d004e6e26744 Auf das, was jetzt kommt, habe ich nämlich absolut keinen Bock. 2 0 fourties male germany
aa7af576605fee2c78c26b85497c64cb9c9fd97228071f8666d9f49f15bce01899bbb930fa60b76d212091d779d83b92e0b54c73cbb21d2c7e1eedc817e41cb3 104695983b1112229b4a48696405d044dad9ddef713aa6eb1a6240cc16b7b7a2a96354ae9da99783850dde08a982091e48d3037288a3a58269cac9fe70a6bd7a Von Salzburg ist es doch nicht weit bis zum Chiemsee. 2 0 fourties male germany
d5b5da343bb0f65e3580bc2e1902a4f5d004241488d751503f2020bc1c93f89715e355e35f6e25def2b90cb3eea99fda403eb92ae3afbb84d039a54a4ed2d875 ad2f69e053b0e20e01c82b9821fe5787f1cc8e4b0b97f0e4cab1e9a652c577169c8244fb222281a60ee3081854014113e04c4ca43643100b7c01dab0fac11974 Warum werden da keine strafrechtlichen Konsequenzen gezogen? 2 0 thirties male germany
client_id path sentence up_votes down_votes age gender accent locale segment
95324d489b122a800b840e0b0d068f7363a1a6c2cd2e7365672cc7033e38deaa794bd59edcf8196aa35c9791652b9085ac3839a98bb50ebab4a1e8538a94846b common_voice_en_20005954.mp3 The applicants are invited for coffee and visa is given immediately. 3 0 en
95324d489b122a800b840e0b0d068f7363a1a6c2cd2e7365672cc7033e38deaa794bd59edcf8196aa35c9791652b9085ac3839a98bb50ebab4a1e8538a94846b common_voice_en_20005955.mp3 Developmental robotics is related to, but differs from, evolutionary robotics. 2 0 en
95324d489b122a800b840e0b0d068f7363a1a6c2cd2e7365672cc7033e38deaa794bd59edcf8196aa35c9791652b9085ac3839a98bb50ebab4a1e8538a94846b common_voice_en_20005956.mp3 The musical was originally directed and choreographed by Alan Lund. 2 0 en
954a4181ae9fba89d1b1570f2ae148b3ee18ee2311de978e698f598db859f830d93d35574596d713518e8c96cdae01fce7a08c60c2e0a22bcf01e020924440a6 common_voice_en_19737073.mp3 He graduated from Columbia High School, in Brown County, South Dakota. 2 0 en
954a4181ae9fba89d1b1570f2ae148b3ee18ee2311de978e698f598db859f830d93d35574596d713518e8c96cdae01fce7a08c60c2e0a22bcf01e020924440a6 common_voice_en_19737074.mp3 Competition for limited resources has also resulted in some local conflicts. 2 0 en

1 client_id path sentence up_votes down_votes age gender accent locale segment
2 aa7af576605fee2c78c26b85497c64cb9c9fd97228071f8666d9f49f15bce01899bbb930fa60b76d212091d779d83b92e0b54c73cbb21d2c7e1eedc817e41cb3 95324d489b122a800b840e0b0d068f7363a1a6c2cd2e7365672cc7033e38deaa794bd59edcf8196aa35c9791652b9085ac3839a98bb50ebab4a1e8538a94846b 21fce545b24d9a5af0403b949e95e8dd3c10c4ff3e371f14e4d5b4ebf588670b7c9e618285fc872d94a89ed7f0217d9019fe5de33f1577b49dcd518eacf63c4b common_voice_en_20005954.mp3 Man sollte den Länderfinanzausgleich durch einen Bundesliga-Soli ersetzen. The applicants are invited for coffee and visa is given immediately. 2 3 0 fourties male germany en
3 aa7af576605fee2c78c26b85497c64cb9c9fd97228071f8666d9f49f15bce01899bbb930fa60b76d212091d779d83b92e0b54c73cbb21d2c7e1eedc817e41cb3 95324d489b122a800b840e0b0d068f7363a1a6c2cd2e7365672cc7033e38deaa794bd59edcf8196aa35c9791652b9085ac3839a98bb50ebab4a1e8538a94846b 42758baa4e91ef6b82b78b11a04bc5117a035a8d3bc42c33c0bb3084909af17043a194cfd8cd9839f0d6ef1ea5413acda5de5d1936abcc8ca073e2da7f9488ea common_voice_en_20005955.mp3 Folgende Lektüre kann ich Ihnen zum Thema Kognitionspsychologie empfehlen. Developmental robotics is related to, but differs from, evolutionary robotics. 2 0 fourties male germany en
4 aa7af576605fee2c78c26b85497c64cb9c9fd97228071f8666d9f49f15bce01899bbb930fa60b76d212091d779d83b92e0b54c73cbb21d2c7e1eedc817e41cb3 95324d489b122a800b840e0b0d068f7363a1a6c2cd2e7365672cc7033e38deaa794bd59edcf8196aa35c9791652b9085ac3839a98bb50ebab4a1e8538a94846b 478f172c2dbda6675247e9674ade79a5b49efeefb7c9e99040dcc69a847a01d69398cf180570859b0cdb6fc887717e04cd8b149c723d48d00b5d18f41314667c common_voice_en_20005956.mp3 Touristen winkten den Leuten am Ufer zu. The musical was originally directed and choreographed by Alan Lund. 2 0 fourties male germany en
5 aa7af576605fee2c78c26b85497c64cb9c9fd97228071f8666d9f49f15bce01899bbb930fa60b76d212091d779d83b92e0b54c73cbb21d2c7e1eedc817e41cb3 954a4181ae9fba89d1b1570f2ae148b3ee18ee2311de978e698f598db859f830d93d35574596d713518e8c96cdae01fce7a08c60c2e0a22bcf01e020924440a6 4854368d6d21cb44103e432b5332f31e8d14030582a40850501bcf9377d699314a5ff27a8206fa89254ddde7f3f1c65d33836f3dfcfa16bcabec08537f2b5f08 common_voice_en_19737073.mp3 Valentin hat das Handtuch geworfen. He graduated from Columbia High School, in Brown County, South Dakota. 2 0 fourties male germany en
6 aa7af576605fee2c78c26b85497c64cb9c9fd97228071f8666d9f49f15bce01899bbb930fa60b76d212091d779d83b92e0b54c73cbb21d2c7e1eedc817e41cb3 954a4181ae9fba89d1b1570f2ae148b3ee18ee2311de978e698f598db859f830d93d35574596d713518e8c96cdae01fce7a08c60c2e0a22bcf01e020924440a6 a841a9f3e032495dd47560e65fba99eeacb3618c07de8b1351c20188e5b71e33cc52f73315f721a3a24b65763c65bb52fbf3ae052eb5774e834dcb57f296db5c common_voice_en_19737074.mp3 Ohne Gehörschutz bei der Arbeit wäre Klaus wohl nach zwei Wochen taub. Competition for limited resources has also resulted in some local conflicts. 2 0 fourties male germany en
aa7af576605fee2c78c26b85497c64cb9c9fd97228071f8666d9f49f15bce01899bbb930fa60b76d212091d779d83b92e0b54c73cbb21d2c7e1eedc817e41cb3 03ab970a5bf5410bc3260b073cce1c7f49c688ace83dc8836b1c0f79a09fea45a27725c769f4a9d2e6181defd016d22642789d7ac51da252b42958a9192bd4c7 Gerrit erinnerte sich daran, dass er einst einen Eid geschworen hatte. 2 0 fourties male germany
aa7af576605fee2c78c26b85497c64cb9c9fd97228071f8666d9f49f15bce01899bbb930fa60b76d212091d779d83b92e0b54c73cbb21d2c7e1eedc817e41cb3 c4a94df443ad5f2c7241413ef7145d5f0de41ae929759073917fe96166da3c7d3a612c920ed7b0f3d5950a38d6205e9dba24af5bfb27e390a220d004e6e26744 Auf das, was jetzt kommt, habe ich nämlich absolut keinen Bock. 2 0 fourties male germany
aa7af576605fee2c78c26b85497c64cb9c9fd97228071f8666d9f49f15bce01899bbb930fa60b76d212091d779d83b92e0b54c73cbb21d2c7e1eedc817e41cb3 104695983b1112229b4a48696405d044dad9ddef713aa6eb1a6240cc16b7b7a2a96354ae9da99783850dde08a982091e48d3037288a3a58269cac9fe70a6bd7a Von Salzburg ist es doch nicht weit bis zum Chiemsee. 2 0 fourties male germany
d5b5da343bb0f65e3580bc2e1902a4f5d004241488d751503f2020bc1c93f89715e355e35f6e25def2b90cb3eea99fda403eb92ae3afbb84d039a54a4ed2d875 ad2f69e053b0e20e01c82b9821fe5787f1cc8e4b0b97f0e4cab1e9a652c577169c8244fb222281a60ee3081854014113e04c4ca43643100b7c01dab0fac11974 Warum werden da keine strafrechtlichen Konsequenzen gezogen? 2 0 thirties male germany

View File

@ -11,18 +11,8 @@ class TestPreprocessors(unittest.TestCase):
root_path = get_tests_input_path()
meta_file = "common_voice.tsv"
items = common_voice(root_path, meta_file)
assert items[0][0] == "Man sollte den Länderfinanzausgleich durch " \
"einen Bundesliga-Soli ersetzen."
assert items[0][1] == os.path.join(get_tests_input_path(), "clips",
"21fce545b24d9a5af0403b949e95e8dd3"
"c10c4ff3e371f14e4d5b4ebf588670b7c"
"9e618285fc872d94a89ed7f0217d9019f"
"e5de33f1577b49dcd518eacf63c4b.wav")
assert items[0][0] == 'The applicants are invited for coffee and visa is given immediately.'
assert items[0][1] == os.path.join(get_tests_input_path(), "clips", "common_voice_en_20005954.wav")
assert items[-1][0] == "Warum werden da keine strafrechtlichen " \
"Konsequenzen gezogen?"
assert items[-1][1] == os.path.join(get_tests_input_path(), "clips",
"ad2f69e053b0e20e01c82b9821fe5787f1"
"cc8e4b0b97f0e4cab1e9a652c577169c82"
"44fb222281a60ee3081854014113e04c4c"
"a43643100b7c01dab0fac11974.wav")
assert items[-1][0] == "Competition for limited resources has also resulted in some local conflicts."
assert items[-1][1] == os.path.join(get_tests_input_path(), "clips", "common_voice_en_19737074.wav")