update align_tts.py model for the trainer

pull/506/head
Eren Gölge 2021-05-27 10:26:09 +02:00
parent 9203b863d9
commit bb355b7441
1 changed files with 168 additions and 30 deletions

View File

@ -4,6 +4,9 @@ import torch.nn as nn
from TTS.tts.layers.align_tts.mdn import MDNBlock
from TTS.tts.layers.feed_forward.decoder import Decoder
from TTS.tts.layers.feed_forward.duration_predictor import DurationPredictor
from TTS.tts.utils.measures import alignment_diagonal_score
from TTS.tts.utils.visual import plot_alignment, plot_spectrogram
from TTS.utils.audio import AudioProcessor
from TTS.tts.layers.feed_forward.encoder import Encoder
from TTS.tts.layers.generic.pos_encoding import PositionalEncoding
from TTS.tts.layers.glow_tts.monotonic_align import generate_path, maximum_path
@ -69,9 +72,19 @@ class AlignTTS(nn.Module):
hidden_channels=256,
hidden_channels_dp=256,
encoder_type="fftransformer",
encoder_params={"hidden_channels_ffn": 1024, "num_heads": 2, "num_layers": 6, "dropout_p": 0.1},
encoder_params={
"hidden_channels_ffn": 1024,
"num_heads": 2,
"num_layers": 6,
"dropout_p": 0.1
},
decoder_type="fftransformer",
decoder_params={"hidden_channels_ffn": 1024, "num_heads": 2, "num_layers": 6, "dropout_p": 0.1},
decoder_params={
"hidden_channels_ffn": 1024,
"num_heads": 2,
"num_layers": 6,
"dropout_p": 0.1
},
length_scale=1,
num_speakers=0,
external_c=False,
@ -79,11 +92,15 @@ class AlignTTS(nn.Module):
):
super().__init__()
self.length_scale = float(length_scale) if isinstance(length_scale, int) else length_scale
self.phase = -1
self.length_scale = float(length_scale) if isinstance(
length_scale, int) else length_scale
self.emb = nn.Embedding(num_chars, hidden_channels)
self.pos_encoder = PositionalEncoding(hidden_channels)
self.encoder = Encoder(hidden_channels, hidden_channels, encoder_type, encoder_params, c_in_channels)
self.decoder = Decoder(out_channels, hidden_channels, decoder_type, decoder_params)
self.encoder = Encoder(hidden_channels, hidden_channels, encoder_type,
encoder_params, c_in_channels)
self.decoder = Decoder(out_channels, hidden_channels, decoder_type,
decoder_params)
self.duration_predictor = DurationPredictor(hidden_channels_dp)
self.mod_layer = nn.Conv1d(hidden_channels, hidden_channels, 1)
@ -104,9 +121,9 @@ class AlignTTS(nn.Module):
mu = mu.transpose(1, 2).unsqueeze(2) # [B, T2, 1, D]
log_sigma = log_sigma.transpose(1, 2).unsqueeze(2) # [B, T2, 1, D]
expanded_y, expanded_mu = torch.broadcast_tensors(y, mu)
exponential = -0.5 * torch.mean(
torch._C._nn.mse_loss(expanded_y, expanded_mu, 0) / torch.pow(log_sigma.exp(), 2), dim=-1
) # B, L, T
exponential = -0.5 * torch.mean(torch._C._nn.mse_loss(
expanded_y, expanded_mu, 0) / torch.pow(log_sigma.exp(), 2),
dim=-1) # B, L, T
logp = exponential - 0.5 * log_sigma.mean(dim=-1)
return logp
@ -140,7 +157,9 @@ class AlignTTS(nn.Module):
[1, 0, 0, 0, 0, 0, 0]]
"""
attn = self.convert_dr_to_align(dr, x_mask, y_mask)
o_en_ex = torch.matmul(attn.squeeze(1).transpose(1, 2), en.transpose(1, 2)).transpose(1, 2)
o_en_ex = torch.matmul(
attn.squeeze(1).transpose(1, 2), en.transpose(1,
2)).transpose(1, 2)
return o_en_ex, attn
def format_durations(self, o_dr_log, x_mask):
@ -174,7 +193,8 @@ class AlignTTS(nn.Module):
x_emb = torch.transpose(x_emb, 1, -1)
# compute sequence masks
x_mask = torch.unsqueeze(sequence_mask(x_lengths, x.shape[1]), 1).to(x.dtype)
x_mask = torch.unsqueeze(sequence_mask(x_lengths, x.shape[1]),
1).to(x.dtype)
# encoder pass
o_en = self.encoder(x_emb, x_mask)
@ -187,7 +207,8 @@ class AlignTTS(nn.Module):
return o_en, o_en_dp, x_mask, g
def _forward_decoder(self, o_en, o_en_dp, dr, x_mask, y_lengths, g):
y_mask = torch.unsqueeze(sequence_mask(y_lengths, None), 1).to(o_en_dp.dtype)
y_mask = torch.unsqueeze(sequence_mask(y_lengths, None),
1).to(o_en_dp.dtype)
# expand o_en with durations
o_en_ex, attn = self.expand_encoder_outputs(o_en, dr, x_mask, y_mask)
# positional encoding
@ -203,11 +224,13 @@ class AlignTTS(nn.Module):
def _forward_mdn(self, o_en, y, y_lengths, x_mask):
# MAS potentials and alignment
mu, log_sigma = self.mdn_block(o_en)
y_mask = torch.unsqueeze(sequence_mask(y_lengths, None), 1).to(o_en.dtype)
dr_mas, logp = self.compute_align_path(mu, log_sigma, y, x_mask, y_mask)
y_mask = torch.unsqueeze(sequence_mask(y_lengths, None),
1).to(o_en.dtype)
dr_mas, logp = self.compute_align_path(mu, log_sigma, y, x_mask,
y_mask)
return dr_mas, mu, log_sigma, logp
def forward(self, x, x_lengths, y, y_lengths, phase=None, g=None): # pylint: disable=unused-argument
def forward(self, x, x_lengths, y, y_lengths, cond_input={"x_vectors": None}, phase=None): # pylint: disable=unused-argument
"""
Shapes:
x: [B, T_max]
@ -216,47 +239,85 @@ class AlignTTS(nn.Module):
dr: [B, T_max]
g: [B, C]
"""
y = y.transpose(1, 2)
g = cond_input['x_vectors'] if 'x_vectors' in cond_input else None
o_de, o_dr_log, dr_mas_log, attn, mu, log_sigma, logp = None, None, None, None, None, None, None
if phase == 0:
# train encoder and MDN
o_en, o_en_dp, x_mask, g = self._forward_encoder(x, x_lengths, g)
dr_mas, mu, log_sigma, logp = self._forward_mdn(o_en, y, y_lengths, x_mask)
y_mask = torch.unsqueeze(sequence_mask(y_lengths, None), 1).to(o_en_dp.dtype)
dr_mas, mu, log_sigma, logp = self._forward_mdn(
o_en, y, y_lengths, x_mask)
y_mask = torch.unsqueeze(sequence_mask(y_lengths, None),
1).to(o_en_dp.dtype)
attn = self.convert_dr_to_align(dr_mas, x_mask, y_mask)
elif phase == 1:
# train decoder
o_en, o_en_dp, x_mask, g = self._forward_encoder(x, x_lengths, g)
dr_mas, _, _, _ = self._forward_mdn(o_en, y, y_lengths, x_mask)
o_de, attn = self._forward_decoder(o_en.detach(), o_en_dp.detach(), dr_mas.detach(), x_mask, y_lengths, g=g)
o_de, attn = self._forward_decoder(o_en.detach(),
o_en_dp.detach(),
dr_mas.detach(),
x_mask,
y_lengths,
g=g)
elif phase == 2:
# train the whole except duration predictor
o_en, o_en_dp, x_mask, g = self._forward_encoder(x, x_lengths, g)
dr_mas, mu, log_sigma, logp = self._forward_mdn(o_en, y, y_lengths, x_mask)
o_de, attn = self._forward_decoder(o_en, o_en_dp, dr_mas, x_mask, y_lengths, g=g)
dr_mas, mu, log_sigma, logp = self._forward_mdn(
o_en, y, y_lengths, x_mask)
o_de, attn = self._forward_decoder(o_en,
o_en_dp,
dr_mas,
x_mask,
y_lengths,
g=g)
elif phase == 3:
# train duration predictor
o_en, o_en_dp, x_mask, g = self._forward_encoder(x, x_lengths, g)
o_dr_log = self.duration_predictor(x, x_mask)
dr_mas, mu, log_sigma, logp = self._forward_mdn(o_en, y, y_lengths, x_mask)
o_de, attn = self._forward_decoder(o_en, o_en_dp, dr_mas, x_mask, y_lengths, g=g)
dr_mas, mu, log_sigma, logp = self._forward_mdn(
o_en, y, y_lengths, x_mask)
o_de, attn = self._forward_decoder(o_en,
o_en_dp,
dr_mas,
x_mask,
y_lengths,
g=g)
o_dr_log = o_dr_log.squeeze(1)
else:
o_en, o_en_dp, x_mask, g = self._forward_encoder(x, x_lengths, g)
o_dr_log = self.duration_predictor(o_en_dp.detach(), x_mask)
dr_mas, mu, log_sigma, logp = self._forward_mdn(o_en, y, y_lengths, x_mask)
o_de, attn = self._forward_decoder(o_en, o_en_dp, dr_mas, x_mask, y_lengths, g=g)
dr_mas, mu, log_sigma, logp = self._forward_mdn(
o_en, y, y_lengths, x_mask)
o_de, attn = self._forward_decoder(o_en,
o_en_dp,
dr_mas,
x_mask,
y_lengths,
g=g)
o_dr_log = o_dr_log.squeeze(1)
dr_mas_log = torch.log(dr_mas + 1).squeeze(1)
return o_de, o_dr_log, dr_mas_log, attn, mu, log_sigma, logp
outputs = {
'model_outputs': o_de.transpose(1, 2),
'alignments': attn,
'durations_log': o_dr_log,
'durations_mas_log': dr_mas_log,
'mu': mu,
'log_sigma': log_sigma,
'logp': logp
}
return outputs
@torch.no_grad()
def inference(self, x, x_lengths, g=None): # pylint: disable=unused-argument
def inference(self, x, cond_input={'x_vectors': None}): # pylint: disable=unused-argument
"""
Shapes:
x: [B, T_max]
x_lengths: [B]
g: [B, C]
"""
g = cond_input['x_vectors'] if 'x_vectors' in cond_input else None
x_lengths = torch.tensor(x.shape[1:2]).to(x.device)
# pad input to prevent dropping the last word
# x = torch.nn.functional.pad(x, pad=(0, 5), mode='constant', value=0)
o_en, o_en_dp, x_mask, g = self._forward_encoder(x, x_lengths, g)
@ -265,14 +326,91 @@ class AlignTTS(nn.Module):
# duration predictor pass
o_dr = self.format_durations(o_dr_log, x_mask).squeeze(1)
y_lengths = o_dr.sum(1)
o_de, attn = self._forward_decoder(o_en, o_en_dp, o_dr, x_mask, y_lengths, g=g)
return o_de, attn
o_de, attn = self._forward_decoder(o_en,
o_en_dp,
o_dr,
x_mask,
y_lengths,
g=g)
outputs = {'model_outputs': o_de.transpose(1, 2), 'alignments': attn}
return outputs
def load_checkpoint(
self, config, checkpoint_path, eval=False
): # pylint: disable=unused-argument, redefined-builtin
def train_step(self, batch: dict, criterion: nn.Module):
text_input = batch['text_input']
text_lengths = batch['text_lengths']
mel_input = batch['mel_input']
mel_lengths = batch['mel_lengths']
x_vectors = batch['x_vectors']
speaker_ids = batch['speaker_ids']
cond_input = {'x_vectors': x_vectors, 'speaker_ids': speaker_ids}
outputs = self.forward(text_input, text_lengths, mel_input, mel_lengths, cond_input, self.phase)
loss_dict = criterion(
outputs['logp'],
outputs['model_outputs'],
mel_input,
mel_lengths,
outputs['durations_log'],
outputs['durations_mas_log'],
text_lengths,
phase=self.phase,
)
# compute alignment error (the lower the better )
align_error = 1 - alignment_diagonal_score(outputs['alignments'],
binary=True)
loss_dict["align_error"] = align_error
return outputs, loss_dict
def train_log(self, ap: AudioProcessor, batch: dict, outputs: dict):
model_outputs = outputs['model_outputs']
alignments = outputs['alignments']
mel_input = batch['mel_input']
pred_spec = model_outputs[0].data.cpu().numpy()
gt_spec = mel_input[0].data.cpu().numpy()
align_img = alignments[0].data.cpu().numpy()
figures = {
"prediction": plot_spectrogram(pred_spec, ap, output_fig=False),
"ground_truth": plot_spectrogram(gt_spec, ap, output_fig=False),
"alignment": plot_alignment(align_img, output_fig=False),
}
# Sample audio
train_audio = ap.inv_melspectrogram(pred_spec.T)
return figures, train_audio
def eval_step(self, batch: dict, criterion: nn.Module):
return self.train_step(batch, criterion)
def eval_log(self, ap: AudioProcessor, batch: dict, outputs: dict):
return self.train_log(ap, batch, outputs)
def load_checkpoint(self, config, checkpoint_path, eval=False): # pylint: disable=unused-argument, redefined-builtin
state = torch.load(checkpoint_path, map_location=torch.device("cpu"))
self.load_state_dict(state["model"])
if eval:
self.eval()
assert not self.training
@staticmethod
def _set_phase(config, global_step):
"""Decide AlignTTS training phase"""
if isinstance(config.phase_start_steps, list):
vals = [i < global_step for i in config.phase_start_steps]
if not True in vals:
phase = 0
else:
phase = (
len(config.phase_start_steps)
- [i < global_step for i in config.phase_start_steps][::-1].index(True)
- 1
)
else:
phase = None
return phase
def on_epoch_start(self, trainer):
"""Set AlignTTS training phase on epoch start."""
self.phase = self._set_phase(trainer.config, trainer.total_steps_done)