mirror of https://github.com/coqui-ai/TTS.git
config update xz
parent
b14c11572e
commit
b94f71c56a
|
@ -1,6 +1,6 @@
|
|||
{
|
||||
"run_name": "mozilla-no-loc",
|
||||
"run_description": "using Bahdenau attention, with original prenet.",
|
||||
"run_name": "mozilla-no-loc-fattn-stopnet",
|
||||
"run_description": "using forward attention, with original prenet, merged stopnet. Compare this with ",
|
||||
|
||||
"audio":{
|
||||
// Audio processing parameters
|
||||
|
@ -42,12 +42,12 @@
|
|||
"attention_norm": "softmax", // softmax or sigmoid. Suggested to use softmax for Tacotron2 and sigmoid for Tacotron.
|
||||
"prenet_type": "original", // ONLY TACOTRON2 - "original" or "bn".
|
||||
"prenet_dropout": true, // ONLY TACOTRON2 - enable/disable dropout at prenet.
|
||||
"use_forward_attn": false, // ONLY TACOTRON2 - if it uses forward attention. In general, it aligns faster.
|
||||
"use_forward_attn": true, // ONLY TACOTRON2 - if it uses forward attention. In general, it aligns faster.
|
||||
"transition_agent": false, // ONLY TACOTRON2 - enable/disable transition agent of forward attention.
|
||||
"location_attn": false, // ONLY TACOTRON2 - enable_disable location sensitive attention. It is enabled for TACOTRON by default.
|
||||
"loss_masking": false, // enable / disable loss masking against the sequence padding.
|
||||
"enable_eos_bos_chars": false, // enable/disable beginning of sentence and end of sentence chars.
|
||||
"stopnet": false, // Train stopnet predicting the end of synthesis.
|
||||
"stopnet": true, // Train stopnet predicting the end of synthesis.
|
||||
"separate_stopnet": false, // Train stopnet seperately if 'stopnet==true'. It prevents stopnet loss to influence the rest of the model. It causes a better model, but it trains SLOWER.
|
||||
|
||||
"batch_size": 32, // Batch size for training. Lower values than 32 might cause hard to learn attention.
|
||||
|
|
3
train.py
3
train.py
|
@ -329,7 +329,8 @@ def evaluate(model, criterion, criterion_st, ap, current_step, epoch):
|
|||
if num_gpus > 1:
|
||||
postnet_loss = reduce_tensor(postnet_loss.data, num_gpus)
|
||||
decoder_loss = reduce_tensor(decoder_loss.data, num_gpus)
|
||||
stop_loss = reduce_tensor(stop_loss.data, num_gpus)
|
||||
if c.stopnet:
|
||||
stop_loss = reduce_tensor(stop_loss.data, num_gpus)
|
||||
|
||||
avg_postnet_loss += float(postnet_loss.item())
|
||||
avg_decoder_loss += float(decoder_loss.item())
|
||||
|
|
Loading…
Reference in New Issue