diff --git a/TTS/bin/compute_embeddings.py b/TTS/bin/compute_embeddings.py index 7719318a..7ea1e4f9 100644 --- a/TTS/bin/compute_embeddings.py +++ b/TTS/bin/compute_embeddings.py @@ -32,8 +32,8 @@ args = parser.parse_args() c_dataset = load_config(args.config_dataset_path) -train_files, dev_files = load_meta_data(c_dataset.datasets, eval_split=args.eval, ignore_generated_eval=True) -wav_files = train_files + dev_files +meta_data_train, meta_data_eval = load_meta_data(c_dataset.datasets, eval_split=args.eval) +wav_files = meta_data_train + meta_data_eval speaker_manager = SpeakerManager(encoder_model_path=args.model_path, encoder_config_path=args.config_path, use_cuda=args.use_cuda) diff --git a/TTS/bin/extract_tts_spectrograms.py b/TTS/bin/extract_tts_spectrograms.py index 0e783c2f..1cbc5516 100755 --- a/TTS/bin/extract_tts_spectrograms.py +++ b/TTS/bin/extract_tts_spectrograms.py @@ -227,7 +227,7 @@ def main(args): # pylint: disable=redefined-outer-name ap = AudioProcessor(**c.audio) # load data instances - meta_data_train, meta_data_eval = load_meta_data(c.datasets, eval_split=args.eval, ignore_generated_eval=True) + meta_data_train, meta_data_eval = load_meta_data(c.datasets, eval_split=args.eval) # use eval and training partitions meta_data = meta_data_train + meta_data_eval diff --git a/TTS/bin/find_unique_chars.py b/TTS/bin/find_unique_chars.py index 6273b752..c7c25d80 100644 --- a/TTS/bin/find_unique_chars.py +++ b/TTS/bin/find_unique_chars.py @@ -24,7 +24,7 @@ def main(): c = load_config(args.config_path) # load all datasets - train_items, eval_items = load_meta_data(c.datasets, eval_split=True, ignore_generated_eval=True) + train_items, eval_items = load_meta_data(c.datasets, eval_split=True) items = train_items + eval_items texts = "".join(item[0] for item in items) diff --git a/TTS/tts/datasets/__init__.py b/TTS/tts/datasets/__init__.py index 736d6ed4..cbae78a7 100644 --- a/TTS/tts/datasets/__init__.py +++ b/TTS/tts/datasets/__init__.py @@ -30,7 +30,7 @@ def split_dataset(items): return items[:eval_split_size], items[eval_split_size:] -def load_meta_data(datasets, eval_split=True, ignore_generated_eval=False): +def load_meta_data(datasets, eval_split=True): meta_data_train_all = [] meta_data_eval_all = [] if eval_split else None for dataset in datasets: @@ -47,11 +47,9 @@ def load_meta_data(datasets, eval_split=True, ignore_generated_eval=False): if eval_split: if meta_file_val: meta_data_eval = preprocessor(root_path, meta_file_val) - meta_data_eval_all += meta_data_eval - elif not ignore_generated_eval: + else: meta_data_eval, meta_data_train = split_dataset(meta_data_train) - meta_data_eval_all += meta_data_eval - + meta_data_eval_all += meta_data_eval meta_data_train_all += meta_data_train # load attention masks for duration predictor training if dataset.meta_file_attn_mask: