mirror of https://github.com/coqui-ai/TTS.git
Add XTTS training unit test
parent
1f92741d6a
commit
affaf11148
|
@ -268,6 +268,7 @@ class GPTTrainer(BaseTTS):
|
|||
dvae_wav = batch["wav"]
|
||||
dvae_mel_spec = self.torch_mel_spectrogram_dvae(dvae_wav)
|
||||
codes = self.dvae.get_codebook_indices(dvae_mel_spec)
|
||||
|
||||
batch["audio_codes"] = codes
|
||||
# delete useless batch tensors
|
||||
del batch["padded_text"]
|
||||
|
@ -454,7 +455,9 @@ class GPTTrainer(BaseTTS):
|
|||
target_options={"anon": True},
|
||||
): # pylint: disable=unused-argument, disable=W0201, disable=W0102, redefined-builtin
|
||||
"""Load the model checkpoint and setup for training or inference"""
|
||||
state = load_fsspec(checkpoint_path, map_location=torch.device("cpu"))["model"]
|
||||
|
||||
state, _ = self.xtts.get_compatible_checkpoint_state(checkpoint_path)
|
||||
|
||||
# load the model weights
|
||||
self.xtts.load_state_dict(state, strict=strict)
|
||||
|
||||
|
|
|
@ -643,6 +643,7 @@ class Xtts(BaseTTS):
|
|||
expected_output_len = torch.tensor(
|
||||
[gpt_codes.shape[-1] * self.gpt.code_stride_len], device=text_tokens.device
|
||||
)
|
||||
|
||||
text_len = torch.tensor([text_tokens.shape[-1]], device=self.device)
|
||||
gpt_latents = self.gpt(
|
||||
text_tokens,
|
||||
|
@ -788,6 +789,25 @@ class Xtts(BaseTTS):
|
|||
self.gpt.init_gpt_for_inference()
|
||||
super().eval()
|
||||
|
||||
def get_compatible_checkpoint_state_dict(self, model_path):
|
||||
checkpoint = load_fsspec(model_path, map_location=torch.device("cpu"))["model"]
|
||||
ignore_keys = ["diffusion_decoder", "vocoder"] if self.args.use_hifigan or self.args.use_ne_hifigan else []
|
||||
ignore_keys += [] if self.args.use_hifigan else ["hifigan_decoder"]
|
||||
ignore_keys += [] if self.args.use_ne_hifigan else ["ne_hifigan_decoder"]
|
||||
for key in list(checkpoint.keys()):
|
||||
# check if it is from the coqui Trainer if so convert it
|
||||
if key.startswith("xtts."):
|
||||
new_key = key.replace("xtts.", "")
|
||||
checkpoint[new_key] = checkpoint[key]
|
||||
del checkpoint[key]
|
||||
key = new_key
|
||||
|
||||
# remove unused keys
|
||||
if key.split(".")[0] in ignore_keys:
|
||||
del checkpoint[key]
|
||||
|
||||
return checkpoint
|
||||
|
||||
def load_checkpoint(
|
||||
self,
|
||||
config,
|
||||
|
@ -821,22 +841,7 @@ class Xtts(BaseTTS):
|
|||
|
||||
self.init_models()
|
||||
|
||||
checkpoint = load_fsspec(model_path, map_location=torch.device("cpu"))["model"]
|
||||
ignore_keys = ["diffusion_decoder", "vocoder"] if self.args.use_hifigan or self.args.use_ne_hifigan else []
|
||||
ignore_keys += [] if self.args.use_hifigan else ["hifigan_decoder"]
|
||||
ignore_keys += [] if self.args.use_ne_hifigan else ["ne_hifigan_decoder"]
|
||||
for key in list(checkpoint.keys()):
|
||||
# check if it is from the coqui Trainer if so convert it
|
||||
if key.startswith("xtts."):
|
||||
coqui_trainer_checkpoint = True
|
||||
new_key = key.replace("xtts.", "")
|
||||
checkpoint[new_key] = checkpoint[key]
|
||||
del checkpoint[key]
|
||||
key = new_key
|
||||
|
||||
# remove unused keys
|
||||
if key.split(".")[0] in ignore_keys:
|
||||
del checkpoint[key]
|
||||
checkpoint = self.get_compatible_checkpoint_state_dict(model_path)
|
||||
|
||||
# deal with v1 and v1.1. V1 has the init_gpt_for_inference keys, v1.1 do not
|
||||
try:
|
||||
|
|
|
@ -52,6 +52,7 @@ SPEAKER_REFERENCE = (
|
|||
)
|
||||
LANGUAGE = config_dataset.language
|
||||
|
||||
|
||||
def main():
|
||||
# init args and config
|
||||
model_args = GPTArgs(
|
||||
|
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,163 @@
|
|||
import os
|
||||
import shutil
|
||||
|
||||
import torch
|
||||
from trainer import Trainer, TrainerArgs
|
||||
|
||||
from tests import get_tests_output_path
|
||||
from TTS.config.shared_configs import BaseDatasetConfig
|
||||
from TTS.tts.datasets import load_tts_samples
|
||||
from TTS.tts.layers.xtts.dvae import DiscreteVAE
|
||||
from TTS.tts.layers.xtts.trainer.gpt_trainer import GPTArgs, GPTTrainer, GPTTrainerConfig, XttsAudioConfig
|
||||
|
||||
config_dataset = BaseDatasetConfig(
|
||||
formatter="ljspeech",
|
||||
dataset_name="ljspeech",
|
||||
path="tests/data/ljspeech/",
|
||||
meta_file_train="metadata.csv",
|
||||
meta_file_val="metadata.csv",
|
||||
language="en",
|
||||
)
|
||||
|
||||
DATASETS_CONFIG_LIST = [config_dataset]
|
||||
|
||||
# Logging parameters
|
||||
RUN_NAME = "GPT_XTTS_LJSpeech_FT"
|
||||
PROJECT_NAME = "XTTS_trainer"
|
||||
DASHBOARD_LOGGER = "tensorboard"
|
||||
LOGGER_URI = None
|
||||
|
||||
# Set here the path that the checkpoints will be saved. Default: ./run/training/
|
||||
OUT_PATH = os.path.join(get_tests_output_path(), "train_outputs", "xtts_tests")
|
||||
os.makedirs(OUT_PATH, exist_ok=True)
|
||||
|
||||
# Create DVAE checkpoint and mel_norms on test time
|
||||
# DVAE parameters: For the training we need the dvae to extract the dvae tokens, given that you must provide the paths for this model
|
||||
DVAE_CHECKPOINT = os.path.join(OUT_PATH, "dvae.pth") # DVAE checkpoint
|
||||
MEL_NORM_FILE = os.path.join(
|
||||
OUT_PATH, "mel_stats.pth"
|
||||
) # Mel spectrogram norms, required for dvae mel spectrogram extraction
|
||||
dvae = DiscreteVAE(
|
||||
channels=80,
|
||||
normalization=None,
|
||||
positional_dims=1,
|
||||
num_tokens=8192,
|
||||
codebook_dim=512,
|
||||
hidden_dim=512,
|
||||
num_resnet_blocks=3,
|
||||
kernel_size=3,
|
||||
num_layers=2,
|
||||
use_transposed_convs=False,
|
||||
)
|
||||
torch.save(dvae.state_dict(), DVAE_CHECKPOINT)
|
||||
mel_stats = torch.ones(80)
|
||||
torch.save(mel_stats, MEL_NORM_FILE)
|
||||
|
||||
|
||||
# XTTS transfer learning parameters: You we need to provide the paths of XTTS model checkpoint that you want to do the fine tuning.
|
||||
TOKENIZER_FILE = "tests/inputs/xtts_vocab.json" # vocab.json file
|
||||
XTTS_CHECKPOINT = None # "/raid/edresson/dev/Checkpoints/XTTS_evaluation/xtts_style_emb_repetition_fix_gt/132500_gpt_ema_coqui_tts_with_enhanced_hifigan.pth" # model.pth file
|
||||
|
||||
|
||||
# Training sentences generations
|
||||
SPEAKER_REFERENCE = "tests/data/ljspeech/wavs/LJ001-0002.wav" # speaker reference to be used in training test sentences
|
||||
LANGUAGE = config_dataset.language
|
||||
|
||||
|
||||
# Training Parameters
|
||||
OPTIMIZER_WD_ONLY_ON_WEIGHTS = True # for multi-gpu training please make it False
|
||||
START_WITH_EVAL = False # if True it will star with evaluation
|
||||
BATCH_SIZE = 2 # set here the batch size
|
||||
GRAD_ACUMM_STEPS = 1 # set here the grad accumulation steps
|
||||
# Note: we recommend that BATCH_SIZE * GRAD_ACUMM_STEPS need to be at least 252 for more efficient training. You can increase/decrease BATCH_SIZE but then set GRAD_ACUMM_STEPS accordingly.
|
||||
|
||||
|
||||
# init args and config
|
||||
model_args = GPTArgs(
|
||||
max_conditioning_length=132300, # 6 secs
|
||||
min_conditioning_length=66150, # 3 secs
|
||||
debug_loading_failures=False,
|
||||
max_wav_length=255995, # ~11.6 seconds
|
||||
max_text_length=200,
|
||||
mel_norm_file=MEL_NORM_FILE,
|
||||
dvae_checkpoint=DVAE_CHECKPOINT,
|
||||
xtts_checkpoint=XTTS_CHECKPOINT, # checkpoint path of the model that you want to fine-tune
|
||||
tokenizer_file=TOKENIZER_FILE,
|
||||
gpt_num_audio_tokens=8194,
|
||||
gpt_start_audio_token=8192,
|
||||
gpt_stop_audio_token=8193,
|
||||
)
|
||||
audio_config = XttsAudioConfig(
|
||||
sample_rate=22050, dvae_sample_rate=22050, diffusion_sample_rate=24000, output_sample_rate=24000
|
||||
)
|
||||
config = GPTTrainerConfig(
|
||||
epochs=1,
|
||||
output_path=OUT_PATH,
|
||||
model_args=model_args,
|
||||
run_name=RUN_NAME,
|
||||
project_name=PROJECT_NAME,
|
||||
run_description="""
|
||||
GPT XTTS training
|
||||
""",
|
||||
dashboard_logger=DASHBOARD_LOGGER,
|
||||
logger_uri=LOGGER_URI,
|
||||
audio=audio_config,
|
||||
batch_size=BATCH_SIZE,
|
||||
batch_group_size=48,
|
||||
eval_batch_size=BATCH_SIZE,
|
||||
num_loader_workers=8,
|
||||
eval_split_max_size=256,
|
||||
print_step=50,
|
||||
plot_step=100,
|
||||
log_model_step=1000,
|
||||
save_step=10000,
|
||||
save_n_checkpoints=1,
|
||||
save_checkpoints=True,
|
||||
# target_loss="loss",
|
||||
print_eval=False,
|
||||
# Optimizer values like tortoise, pytorch implementation with modifications to not apply WD to non-weight parameters.
|
||||
optimizer="AdamW",
|
||||
optimizer_wd_only_on_weights=OPTIMIZER_WD_ONLY_ON_WEIGHTS,
|
||||
optimizer_params={"betas": [0.9, 0.96], "eps": 1e-8, "weight_decay": 1e-2},
|
||||
lr=5e-06, # learning rate
|
||||
lr_scheduler="MultiStepLR",
|
||||
# it was adjusted accordly for the new step scheme
|
||||
lr_scheduler_params={"milestones": [50000 * 18, 150000 * 18, 300000 * 18], "gamma": 0.5, "last_epoch": -1},
|
||||
test_sentences=[
|
||||
{
|
||||
"text": "This cake is great. It's so delicious and moist.",
|
||||
"speaker_wav": SPEAKER_REFERENCE,
|
||||
"language": LANGUAGE,
|
||||
},
|
||||
],
|
||||
)
|
||||
|
||||
# init the model from config
|
||||
model = GPTTrainer.init_from_config(config)
|
||||
|
||||
# load training samples
|
||||
train_samples, eval_samples = load_tts_samples(
|
||||
DATASETS_CONFIG_LIST,
|
||||
eval_split=True,
|
||||
eval_split_max_size=config.eval_split_max_size,
|
||||
eval_split_size=config.eval_split_size,
|
||||
)
|
||||
|
||||
# init the trainer and 🚀
|
||||
trainer = Trainer(
|
||||
TrainerArgs(
|
||||
restore_path=None, # xtts checkpoint is restored via xtts_checkpoint key so no need of restore it using Trainer restore_path parameter
|
||||
skip_train_epoch=False,
|
||||
start_with_eval=True,
|
||||
grad_accum_steps=GRAD_ACUMM_STEPS,
|
||||
),
|
||||
config,
|
||||
output_path=OUT_PATH,
|
||||
model=model,
|
||||
train_samples=train_samples,
|
||||
eval_samples=eval_samples,
|
||||
)
|
||||
trainer.fit()
|
||||
|
||||
# remove output path
|
||||
shutil.rmtree(OUT_PATH)
|
Loading…
Reference in New Issue