mirror of https://github.com/coqui-ai/TTS.git
🐸 Coqui Studio API integration (#2484)
* Warn when lang is not avail * Make style * Implement Coqui Studio API * Test * Update docs * Set action * Make style * Make lint * Update README * Make style * Fix action * Run actionspull/2485/head
parent
ce79160576
commit
ad8b9bf2be
|
@ -32,7 +32,8 @@ jobs:
|
|||
- name: check OS
|
||||
run: cat /etc/os-release
|
||||
- name: set ENV
|
||||
run: export TRAINER_TELEMETRY=0
|
||||
run: |
|
||||
export TRAINER_TELEMETRY=0
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
sudo apt-get update
|
||||
|
@ -49,4 +50,6 @@ jobs:
|
|||
python3 -m pip install .[all]
|
||||
python3 setup.py egg_info
|
||||
- name: Unit tests
|
||||
run: make inference_tests
|
||||
run: |
|
||||
export COQUI_STUDIO_TOKEN=${{ secrets.COQUI_STUDIO_TOKEN }}
|
||||
make inference_tests
|
||||
|
|
30
README.md
30
README.md
|
@ -197,6 +197,36 @@ tts = TTS(model_name="tts_models/multilingual/multi-dataset/your_tts", progress_
|
|||
tts.tts_to_file("This is voice cloning.", speaker_wav="my/cloning/audio.wav", language="en", file_path="output.wav")
|
||||
tts.tts_to_file("C'est le clonage de la voix.", speaker_wav="my/cloning/audio.wav", language="fr-fr", file_path="output.wav")
|
||||
tts.tts_to_file("Isso é clonagem de voz.", speaker_wav="my/cloning/audio.wav", language="pt-br", file_path="output.wav")
|
||||
|
||||
|
||||
# Example voice conversion converting speaker of the `source_wav` to the speaker of the `target_wav`
|
||||
|
||||
tts = TTS(model_name="voice_conversion_models/multilingual/vctk/freevc24", progress_bar=False, gpu=True)
|
||||
tts.voice_conversion_to_file(source_wav="my/source.wav", target_wav="my/target.wav", file_path="output.wav")
|
||||
|
||||
# Example voice cloning by a single speaker TTS model combining with the voice conversion model. This way, you can
|
||||
# clone voices by using any model in 🐸TTS.
|
||||
|
||||
tts = TTS("tts_models/de/thorsten/tacotron2-DDC")
|
||||
tts.tts_with_vc_to_file(
|
||||
"Wie sage ich auf Italienisch, dass ich dich liebe?",
|
||||
speaker_wav="target/speaker.wav",
|
||||
file_path="ouptut.wav"
|
||||
)
|
||||
|
||||
# Example text to speech using [🐸Coqui Studio](https://coqui.ai) models. You can use all of your available speakers in the studio.
|
||||
# [🐸Coqui Studio](https://coqui.ai) API token is required. You can get it from the [account page](https://coqui.ai/account).
|
||||
# You should set the `COQUI_STUDIO_TOKEN` environment variable to use the API token.
|
||||
|
||||
# If you have a valid API token set you will see the studio speakers as separate models in the list.
|
||||
# The name format is coqui_studio/en/<studio_speaker_name>/coqui_studio
|
||||
models = TTS().list_models()
|
||||
# Init TTS with the target studio speaker
|
||||
tts = TTS(model_name="coqui_studio/en/Torcull Diarmuid/coqui_studio", progress_bar=False, gpu=False)
|
||||
# Run TTS
|
||||
tts.tts_to_file(text="This is a test.", file_path=OUTPUT_PATH)
|
||||
# Run TTS with emotion and speed control
|
||||
tts.tts_to_file(text="This is a test.", file_path=OUTPUT_PATH, emotion="Happy", speed=1.5)
|
||||
```
|
||||
|
||||
### Command line `tts`
|
||||
|
|
380
TTS/api.py
380
TTS/api.py
|
@ -1,11 +1,227 @@
|
|||
import http.client
|
||||
import json
|
||||
import os
|
||||
import tempfile
|
||||
import urllib.request
|
||||
from pathlib import Path
|
||||
from typing import Tuple
|
||||
|
||||
import numpy as np
|
||||
from scipy.io import wavfile
|
||||
|
||||
from TTS.utils.audio.numpy_transforms import save_wav
|
||||
from TTS.utils.manage import ModelManager
|
||||
from TTS.utils.synthesizer import Synthesizer
|
||||
|
||||
|
||||
class Speaker(object):
|
||||
"""Convert dict to object."""
|
||||
|
||||
def __init__(self, d, is_voice=False):
|
||||
self.is_voice = is_voice
|
||||
for k, v in d.items():
|
||||
if isinstance(k, (list, tuple)):
|
||||
setattr(self, k, [Speaker(x) if isinstance(x, dict) else x for x in v])
|
||||
else:
|
||||
setattr(self, k, Speaker(v) if isinstance(v, dict) else v)
|
||||
|
||||
def __repr__(self):
|
||||
return str(self.__dict__)
|
||||
|
||||
|
||||
class CS_API:
|
||||
"""🐸Coqui Studio API Wrapper.
|
||||
|
||||
🐸Coqui Studio is the most advanced voice generation platform. You can generate new voices by voice cloning, voice
|
||||
interpolation, or our unique prompt to voice technology. It also provides a set of built-in voices with different
|
||||
characteristics. You can use these voices to generate new audio files or use them in your applications.
|
||||
You can use all the built-in and your own 🐸Coqui Studio speakers with this API with an API token.
|
||||
You can signup to 🐸Coqui Studio from https://app.coqui.ai/auth/signup and get an API token from
|
||||
https://app.coqui.ai/account. We can either enter the token as an environment variable as
|
||||
`export COQUI_STUDIO_TOKEN=<token>` or pass it as `CS_API(api_token=<toke>)`.
|
||||
Visit https://app.coqui.ai/api for more information.
|
||||
|
||||
Example listing all available speakers:
|
||||
>>> from TTS.api import CS_API
|
||||
>>> tts = CS_API()
|
||||
>>> tts.speakers
|
||||
|
||||
Example listing all emotions:
|
||||
>>> from TTS.api import CS_API
|
||||
>>> tts = CS_API()
|
||||
>>> tts.emotions
|
||||
|
||||
Example with a built-in 🐸 speaker:
|
||||
>>> from TTS.api import CS_API
|
||||
>>> tts = CS_API()
|
||||
>>> wav, sr = api.tts("Hello world", speaker_name="Claribel Dervla")
|
||||
>>> filepath = tts.tts_to_file(text="Hello world!", speaker_name=tts.speakers[0].name, file_path="output.wav")
|
||||
"""
|
||||
|
||||
def __init__(self, api_token=None):
|
||||
self.api_token = api_token
|
||||
self.api_prefix = "/api/v2"
|
||||
self.headers = None
|
||||
self._speakers = None
|
||||
self._check_token()
|
||||
|
||||
@property
|
||||
def speakers(self):
|
||||
if self._speakers is None:
|
||||
self._speakers = self.list_all_speakers()
|
||||
return self._speakers
|
||||
|
||||
@property
|
||||
def emotions(self):
|
||||
"""Return a list of available emotions.
|
||||
|
||||
TODO: Get this from the API endpoint.
|
||||
"""
|
||||
return ["Neutral", "Happy", "Sad", "Angry", "Dull"]
|
||||
|
||||
def _check_token(self):
|
||||
if self.api_token is None:
|
||||
self.api_token = os.environ.get("COQUI_STUDIO_TOKEN")
|
||||
self.headers = {"Content-Type": "application/json", "Authorization": f"Bearer {self.api_token}"}
|
||||
if not self.api_token:
|
||||
raise ValueError(
|
||||
"No API token found for 🐸Coqui Studio voices - https://coqui.ai.\n"
|
||||
"Visit 🔗https://app.coqui.ai/account to get one.\n"
|
||||
"Set it as an environment variable `export COQUI_STUDIO_TOKEN=<token>`\n"
|
||||
""
|
||||
)
|
||||
|
||||
def list_all_speakers(self):
|
||||
"""Return both built-in Coqui Studio speakers and custom voices created by the user."""
|
||||
return self.list_speakers() + self.list_voices()
|
||||
|
||||
def list_speakers(self):
|
||||
"""List built-in Coqui Studio speakers."""
|
||||
self._check_token()
|
||||
conn = http.client.HTTPSConnection("app.coqui.ai")
|
||||
conn.request("GET", f"{self.api_prefix}/speakers", headers=self.headers)
|
||||
res = conn.getresponse()
|
||||
data = res.read()
|
||||
return [Speaker(s) for s in json.loads(data)["result"]]
|
||||
|
||||
def list_voices(self):
|
||||
"""List custom voices created by the user."""
|
||||
conn = http.client.HTTPSConnection("app.coqui.ai")
|
||||
conn.request("GET", f"{self.api_prefix}/voices", headers=self.headers)
|
||||
res = conn.getresponse()
|
||||
data = res.read()
|
||||
return [Speaker(s, True) for s in json.loads(data)["result"]]
|
||||
|
||||
def list_speakers_as_tts_models(self):
|
||||
"""List speakers in ModelManager format."""
|
||||
models = []
|
||||
for speaker in self.speakers:
|
||||
model = f"coqui_studio/en/{speaker.name}/coqui_studio"
|
||||
models.append(model)
|
||||
return models
|
||||
|
||||
def name_to_speaker(self, name):
|
||||
for speaker in self.speakers:
|
||||
if speaker.name == name:
|
||||
return speaker
|
||||
raise ValueError(f"Speaker {name} not found.")
|
||||
|
||||
def id_to_speaker(self, speaker_id):
|
||||
for speaker in self.speakers:
|
||||
if speaker.id == speaker_id:
|
||||
return speaker
|
||||
raise ValueError(f"Speaker {speaker_id} not found.")
|
||||
|
||||
@staticmethod
|
||||
def url_to_np(url):
|
||||
tmp_file, _ = urllib.request.urlretrieve(url)
|
||||
rate, data = wavfile.read(tmp_file)
|
||||
return data, rate
|
||||
|
||||
@staticmethod
|
||||
def _create_payload(text, speaker, emotion, speed):
|
||||
payload = {}
|
||||
if speaker.is_voice:
|
||||
payload["voice_id"] = speaker.id
|
||||
else:
|
||||
payload["speaker_id"] = speaker.id
|
||||
payload.update(
|
||||
{
|
||||
"emotion": emotion,
|
||||
"name": speaker.name,
|
||||
"text": text,
|
||||
"speed": speed,
|
||||
}
|
||||
)
|
||||
return payload
|
||||
|
||||
def tts(
|
||||
self,
|
||||
text: str,
|
||||
speaker_name: str = None,
|
||||
speaker_id=None,
|
||||
emotion="Neutral",
|
||||
speed=1.0,
|
||||
language=None, # pylint: disable=unused-argument
|
||||
) -> Tuple[np.ndarray, int]:
|
||||
"""Synthesize speech from text.
|
||||
|
||||
Args:
|
||||
text (str): Text to synthesize.
|
||||
speaker_name (str): Name of the speaker. You can get the list of speakers with `list_speakers()` and
|
||||
voices (user generated speakers) with `list_voices()`.
|
||||
speaker_id (str): Speaker ID. If None, the speaker name is used.
|
||||
emotion (str): Emotion of the speaker. One of "Neutral", "Happy", "Sad", "Angry", "Dull".
|
||||
speed (float): Speed of the speech. 1.0 is normal speed.
|
||||
language (str): Language of the text. If None, the default language of the speaker is used.
|
||||
"""
|
||||
self._check_token()
|
||||
if speaker_name is None and speaker_id is None:
|
||||
raise ValueError(" [!] Please provide either a `speaker_name` or a `speaker_id`.")
|
||||
if speaker_id is None:
|
||||
speaker = self.name_to_speaker(speaker_name)
|
||||
else:
|
||||
speaker = self.id_to_speaker(speaker_id)
|
||||
conn = http.client.HTTPSConnection("app.coqui.ai")
|
||||
payload = self._create_payload(text, speaker, emotion, speed)
|
||||
conn.request("POST", "/api/v2/samples", json.dumps(payload), self.headers)
|
||||
res = conn.getresponse()
|
||||
data = res.read()
|
||||
try:
|
||||
wav, sr = self.url_to_np(json.loads(data)["audio_url"])
|
||||
except KeyError as e:
|
||||
raise ValueError(f" [!] 🐸 API returned error: {data}") from e
|
||||
return wav, sr
|
||||
|
||||
def tts_to_file(
|
||||
self,
|
||||
text: str,
|
||||
speaker_name: str,
|
||||
speaker_id=None,
|
||||
emotion="Neutral",
|
||||
speed=1.0,
|
||||
language=None,
|
||||
file_path: str = None,
|
||||
) -> str:
|
||||
"""Synthesize speech from text and save it to a file.
|
||||
|
||||
Args:
|
||||
text (str): Text to synthesize.
|
||||
speaker_name (str): Name of the speaker. You can get the list of speakers with `list_speakers()` and
|
||||
voices (user generated speakers) with `list_voices()`.
|
||||
speaker_id (str): Speaker ID. If None, the speaker name is used.
|
||||
emotion (str): Emotion of the speaker. One of "Neutral", "Happy", "Sad", "Angry", "Dull".
|
||||
speed (float): Speed of the speech. 1.0 is normal speed.
|
||||
language (str): Language of the text. If None, the default language of the speaker is used.
|
||||
file_path (str): Path to save the file. If None, a temporary file is created.
|
||||
"""
|
||||
if file_path is None:
|
||||
file_path = tempfile.mktemp(".wav")
|
||||
wav, sr = self.tts(text, speaker_name, speaker_id, emotion, speed, language)
|
||||
wavfile.write(file_path, sr, wav)
|
||||
return file_path
|
||||
|
||||
|
||||
class TTS:
|
||||
"""TODO: Add voice conversion and Capacitron support."""
|
||||
|
||||
|
@ -54,9 +270,12 @@ class TTS:
|
|||
|
||||
self.synthesizer = None
|
||||
self.voice_converter = None
|
||||
self.csapi = None
|
||||
self.model_name = None
|
||||
|
||||
if model_name:
|
||||
self.load_tts_model_by_name(model_name, gpu)
|
||||
|
||||
if model_path:
|
||||
self.load_tts_model_by_path(
|
||||
model_path, config_path, vocoder_path=vocoder_path, vocoder_config=vocoder_config_path, gpu=gpu
|
||||
|
@ -72,6 +291,10 @@ class TTS:
|
|||
return self.synthesizer.tts_model.speaker_manager.num_speakers > 1
|
||||
return False
|
||||
|
||||
@property
|
||||
def is_coqui_studio(self):
|
||||
return "coqui_studio" in self.model_name
|
||||
|
||||
@property
|
||||
def is_multi_lingual(self):
|
||||
if hasattr(self.synthesizer.tts_model, "language_manager") and self.synthesizer.tts_model.language_manager:
|
||||
|
@ -96,8 +319,14 @@ class TTS:
|
|||
|
||||
@staticmethod
|
||||
def list_models():
|
||||
try:
|
||||
csapi = CS_API()
|
||||
models = csapi.list_speakers_as_tts_models()
|
||||
except ValueError as e:
|
||||
print(e)
|
||||
models = []
|
||||
manager = ModelManager(models_file=TTS.get_models_file_path(), progress_bar=False, verbose=False)
|
||||
return manager.list_tts_models()
|
||||
return manager.list_tts_models() + models
|
||||
|
||||
def download_model_by_name(self, model_name: str):
|
||||
model_path, config_path, model_item = self.manager.download_model(model_name)
|
||||
|
@ -125,22 +354,28 @@ class TTS:
|
|||
|
||||
TODO: Add tests
|
||||
"""
|
||||
self.synthesizer = None
|
||||
self.csapi = None
|
||||
self.model_name = model_name
|
||||
|
||||
model_path, config_path, vocoder_path, vocoder_config_path = self.download_model_by_name(model_name)
|
||||
if "coqui_studio" in model_name:
|
||||
self.csapi = CS_API()
|
||||
else:
|
||||
model_path, config_path, vocoder_path, vocoder_config_path = self.download_model_by_name(model_name)
|
||||
|
||||
# init synthesizer
|
||||
# None values are fetch from the model
|
||||
self.synthesizer = Synthesizer(
|
||||
tts_checkpoint=model_path,
|
||||
tts_config_path=config_path,
|
||||
tts_speakers_file=None,
|
||||
tts_languages_file=None,
|
||||
vocoder_checkpoint=vocoder_path,
|
||||
vocoder_config=vocoder_config_path,
|
||||
encoder_checkpoint=None,
|
||||
encoder_config=None,
|
||||
use_cuda=gpu,
|
||||
)
|
||||
# init synthesizer
|
||||
# None values are fetch from the model
|
||||
self.synthesizer = Synthesizer(
|
||||
tts_checkpoint=model_path,
|
||||
tts_config_path=config_path,
|
||||
tts_speakers_file=None,
|
||||
tts_languages_file=None,
|
||||
vocoder_checkpoint=vocoder_path,
|
||||
vocoder_config=vocoder_config_path,
|
||||
encoder_checkpoint=None,
|
||||
encoder_config=None,
|
||||
use_cuda=gpu,
|
||||
)
|
||||
|
||||
def load_tts_model_by_path(
|
||||
self, model_path: str, config_path: str, vocoder_path: str = None, vocoder_config: str = None, gpu: bool = False
|
||||
|
@ -167,17 +402,88 @@ class TTS:
|
|||
use_cuda=gpu,
|
||||
)
|
||||
|
||||
def _check_arguments(self, speaker: str = None, language: str = None, speaker_wav: str = None):
|
||||
if self.is_multi_speaker and (speaker is None and speaker_wav is None):
|
||||
raise ValueError("Model is multi-speaker but no speaker is provided.")
|
||||
if self.is_multi_lingual and language is None:
|
||||
raise ValueError("Model is multi-lingual but no language is provided.")
|
||||
if not self.is_multi_speaker and speaker is not None:
|
||||
raise ValueError("Model is not multi-speaker but speaker is provided.")
|
||||
if not self.is_multi_lingual and language is not None:
|
||||
raise ValueError("Model is not multi-lingual but language is provided.")
|
||||
def _check_arguments(
|
||||
self,
|
||||
speaker: str = None,
|
||||
language: str = None,
|
||||
speaker_wav: str = None,
|
||||
emotion: str = None,
|
||||
speed: float = None,
|
||||
) -> None:
|
||||
"""Check if the arguments are valid for the model."""
|
||||
if not self.is_coqui_studio:
|
||||
# check for the coqui tts models
|
||||
if self.is_multi_speaker and (speaker is None and speaker_wav is None):
|
||||
raise ValueError("Model is multi-speaker but no `speaker` is provided.")
|
||||
if self.is_multi_lingual and language is None:
|
||||
raise ValueError("Model is multi-lingual but no `language` is provided.")
|
||||
if not self.is_multi_speaker and speaker is not None:
|
||||
raise ValueError("Model is not multi-speaker but `speaker` is provided.")
|
||||
if not self.is_multi_lingual and language is not None:
|
||||
raise ValueError("Model is not multi-lingual but `language` is provided.")
|
||||
if not emotion is None and not speed is None:
|
||||
raise ValueError("Emotion and speed can only be used with Coqui Studio models.")
|
||||
else:
|
||||
if emotion is None:
|
||||
emotion = "Neutral"
|
||||
if speed is None:
|
||||
speed = 1.0
|
||||
# check for the studio models
|
||||
if speaker_wav is not None:
|
||||
raise ValueError("Coqui Studio models do not support `speaker_wav` argument.")
|
||||
if speaker is not None:
|
||||
raise ValueError("Coqui Studio models do not support `speaker` argument.")
|
||||
if language is not None and language != "en":
|
||||
raise ValueError("Coqui Studio models currently support only `language=en` argument.")
|
||||
if emotion not in ["Neutral", "Happy", "Sad", "Angry", "Dull"]:
|
||||
raise ValueError(f"Emotion - `{emotion}` - must be one of `Neutral`, `Happy`, `Sad`, `Angry`, `Dull`.")
|
||||
|
||||
def tts(self, text: str, speaker: str = None, language: str = None, speaker_wav: str = None):
|
||||
def tts_coqui_studio(
|
||||
self,
|
||||
text: str,
|
||||
speaker_name: str = None,
|
||||
language: str = None,
|
||||
emotion: str = "Neutral",
|
||||
speed: float = 1.0,
|
||||
file_path: str = None,
|
||||
):
|
||||
"""Convert text to speech using Coqui Studio models. Use `CS_API` class if you are only interested in the API.
|
||||
|
||||
Args:
|
||||
text (str):
|
||||
Input text to synthesize.
|
||||
speaker_name (str, optional):
|
||||
Speaker name from Coqui Studio. Defaults to None.
|
||||
language (str, optional):
|
||||
Language code. Coqui Studio currently supports only English. Defaults to None.
|
||||
emotion (str, optional):
|
||||
Emotion of the speaker. One of "Neutral", "Happy", "Sad", "Angry", "Dull". Defaults to "Neutral".
|
||||
speed (float, optional):
|
||||
Speed of the speech. Defaults to 1.0.
|
||||
file_path (str, optional):
|
||||
Path to save the output file. When None it returns the `np.ndarray` of waveform. Defaults to None.
|
||||
"""
|
||||
speaker_name = self.model_name.split("/")[2]
|
||||
if file_path is None:
|
||||
return self.csapi.tts_to_file(
|
||||
text=text,
|
||||
speaker_name=speaker_name,
|
||||
language=language,
|
||||
speed=speed,
|
||||
emotion=emotion,
|
||||
file_path=file_path,
|
||||
)[0]
|
||||
return self.csapi.tts(text=text, speaker_name=speaker_name, language=language, speed=speed, emotion=emotion)[0]
|
||||
|
||||
def tts(
|
||||
self,
|
||||
text: str,
|
||||
speaker: str = None,
|
||||
language: str = None,
|
||||
speaker_wav: str = None,
|
||||
emotion: str = None,
|
||||
speed: float = None,
|
||||
):
|
||||
"""Convert text to speech.
|
||||
|
||||
Args:
|
||||
|
@ -192,8 +498,17 @@ class TTS:
|
|||
speaker_wav (str, optional):
|
||||
Path to a reference wav file to use for voice cloning with supporting models like YourTTS.
|
||||
Defaults to None.
|
||||
emotion (str, optional):
|
||||
Emotion to use for 🐸Coqui Studio models. If None, Studio models use "Neutral". Defaults to None.
|
||||
speed (float, optional):
|
||||
Speed factor to use for 🐸Coqui Studio models, between 0 and 2.0. If None, Studio models use 1.0.
|
||||
Defaults to None.
|
||||
"""
|
||||
self._check_arguments(speaker=speaker, language=language, speaker_wav=speaker_wav)
|
||||
self._check_arguments(speaker=speaker, language=language, speaker_wav=speaker_wav, emotion=emotion, speed=speed)
|
||||
if self.csapi is not None:
|
||||
return self.tts_coqui_studio(
|
||||
text=text, speaker_name=speaker, language=language, emotion=emotion, speed=speed
|
||||
)
|
||||
|
||||
wav = self.synthesizer.tts(
|
||||
text=text,
|
||||
|
@ -213,6 +528,8 @@ class TTS:
|
|||
speaker: str = None,
|
||||
language: str = None,
|
||||
speaker_wav: str = None,
|
||||
emotion: str = "Neutral",
|
||||
speed: float = 1.0,
|
||||
file_path: str = "output.wav",
|
||||
):
|
||||
"""Convert text to speech.
|
||||
|
@ -229,11 +546,22 @@ class TTS:
|
|||
speaker_wav (str, optional):
|
||||
Path to a reference wav file to use for voice cloning with supporting models like YourTTS.
|
||||
Defaults to None.
|
||||
emotion (str, optional):
|
||||
Emotion to use for 🐸Coqui Studio models. Defaults to "Neutral".
|
||||
speed (float, optional):
|
||||
Speed factor to use for 🐸Coqui Studio models, between 0.0 and 2.0. Defaults to None.
|
||||
file_path (str, optional):
|
||||
Output file path. Defaults to "output.wav".
|
||||
"""
|
||||
self._check_arguments(speaker=speaker, language=language, speaker_wav=speaker_wav)
|
||||
|
||||
if self.csapi is not None:
|
||||
return self.tts_coqui_studio(
|
||||
text=text, speaker_name=speaker, language=language, emotion=emotion, speed=speed, file_path=file_path
|
||||
)
|
||||
wav = self.tts(text=text, speaker=speaker, language=language, speaker_wav=speaker_wav)
|
||||
self.synthesizer.save_wav(wav=wav, path=file_path)
|
||||
return file_path
|
||||
|
||||
def voice_conversion(
|
||||
self,
|
||||
|
|
|
@ -290,7 +290,14 @@ class Synthesizer(object):
|
|||
language_id = list(self.tts_model.language_manager.name_to_id.values())[0]
|
||||
|
||||
elif language_name and isinstance(language_name, str):
|
||||
language_id = self.tts_model.language_manager.name_to_id[language_name]
|
||||
try:
|
||||
language_id = self.tts_model.language_manager.name_to_id[language_name]
|
||||
except KeyError as e:
|
||||
raise ValueError(
|
||||
f" [!] Looks like you use a multi-lingual model. "
|
||||
f"Language {language_name} is not in the available languages: "
|
||||
f"{self.tts_model.language_manager.name_to_id.keys()}."
|
||||
) from e
|
||||
|
||||
elif not language_name:
|
||||
raise ValueError(
|
||||
|
|
|
@ -109,7 +109,7 @@ tts-server --model_name "<type>/<language>/<dataset>/<model_name>" \
|
|||
--vocoder_name "<type>/<language>/<dataset>/<model_name>"
|
||||
```
|
||||
|
||||
## Python API
|
||||
## Python 🐸TTS API
|
||||
|
||||
You can run a multi-speaker and multi-lingual model in Python as
|
||||
|
||||
|
@ -163,4 +163,34 @@ tts.tts_with_vc_to_file(
|
|||
speaker_wav="target/speaker.wav",
|
||||
file_path="ouptut.wav"
|
||||
)
|
||||
|
||||
Example text to speech using [🐸Coqui Studio](https://coqui.ai) models. You can use all of your available speakers in the studio.
|
||||
[🐸Coqui Studio](https://coqui.ai) API token is required. You can get it from the [account page](https://coqui.ai/account).
|
||||
You should set the `COQUI_STUDIO_TOKEN` environment variable to use the API token.
|
||||
|
||||
```python
|
||||
# If you have a valid API token set you will see the studio speakers as separate models in the list.
|
||||
# The name format is coqui_studio/en/<studio_speaker_name>/coqui_studio
|
||||
models = TTS().list_models()
|
||||
# Init TTS with the target studio speaker
|
||||
tts = TTS(model_name="coqui_studio/en/Torcull Diarmuid/coqui_studio", progress_bar=False, gpu=False)
|
||||
# Run TTS
|
||||
tts.tts_to_file(text="This is a test.", file_path=OUTPUT_PATH)
|
||||
# Run TTS with emotion and speed control
|
||||
tts.tts_to_file(text="This is a test.", file_path=OUTPUT_PATH, emotion="Happy", speed=1.5)
|
||||
```
|
||||
|
||||
If you just need 🐸 Coqui Studio speakers, you can use `CS_API`. It is a wrapper around the 🐸 Coqui Studio API.
|
||||
|
||||
```python
|
||||
from TTS.api import CS_API
|
||||
|
||||
# Init 🐸 Coqui Studio API
|
||||
# you can either set the API token as an environment variable `COQUI_STUDIO_TOKEN` or pass it as an argument.
|
||||
api = CS_API(api_token=<token>)
|
||||
api.speakers
|
||||
api.emotions
|
||||
api.list_speakers()
|
||||
api.list_voices()
|
||||
wav, sample_rate = api.tts(text="This is a test.", speaker=api.speakers[0].name, emotion="Happy", speed=1.5)
|
||||
```
|
|
@ -2,12 +2,41 @@ import os
|
|||
import unittest
|
||||
|
||||
from tests import get_tests_data_path, get_tests_output_path
|
||||
from TTS.api import TTS
|
||||
from TTS.api import CS_API, TTS
|
||||
|
||||
OUTPUT_PATH = os.path.join(get_tests_output_path(), "test_python_api.wav")
|
||||
cloning_test_wav_path = os.path.join(get_tests_data_path(), "ljspeech/wavs/LJ001-0028.wav")
|
||||
|
||||
|
||||
class CS_APITest(unittest.TestCase):
|
||||
def test_speakers(self):
|
||||
tts = CS_API()
|
||||
self.assertGreater(len(tts.speakers), 1)
|
||||
|
||||
def test_emotions(self):
|
||||
tts = CS_API()
|
||||
self.assertGreater(len(tts.emotions), 1)
|
||||
|
||||
def test_list_calls(self):
|
||||
tts = CS_API()
|
||||
self.assertGreater(len(tts.list_voices()), 1)
|
||||
self.assertGreater(len(tts.list_speakers()), 1)
|
||||
self.assertGreater(len(tts.list_all_speakers()), 1)
|
||||
self.assertGreater(len(tts.list_speakers_as_tts_models()), 1)
|
||||
|
||||
def test_name_to_speaker(self):
|
||||
tts = CS_API()
|
||||
speaker_name = tts.list_speakers_as_tts_models()[0].split("/")[2]
|
||||
speaker = tts.name_to_speaker(speaker_name)
|
||||
self.assertEqual(speaker.name, speaker_name)
|
||||
|
||||
def test_tts(self):
|
||||
tts = CS_API()
|
||||
wav, sr = tts.tts(text="This is a test.", speaker_name=tts.list_speakers()[0].name)
|
||||
self.assertEqual(sr, 44100)
|
||||
self.assertGreater(len(wav), 1)
|
||||
|
||||
|
||||
class TTSTest(unittest.TestCase):
|
||||
def test_single_speaker_model(self):
|
||||
tts = TTS(model_name="tts_models/de/thorsten/tacotron2-DDC", progress_bar=False, gpu=False)
|
||||
|
@ -26,6 +55,30 @@ class TTSTest(unittest.TestCase):
|
|||
self.assertIsNone(tts.speakers)
|
||||
self.assertIsNone(tts.languages)
|
||||
|
||||
def test_studio_model(self):
|
||||
tts = TTS(model_name="coqui_studio/en/Torcull Diarmuid/coqui_studio")
|
||||
tts.tts_to_file(text="This is a test.")
|
||||
|
||||
# check speed > 2.0 raises error
|
||||
raised_error = False
|
||||
try:
|
||||
_ = tts.tts(text="This is a test.", speed=4.0, emotion="Sad") # should raise error with speed > 2.0
|
||||
except ValueError:
|
||||
raised_error = True
|
||||
self.assertTrue(raised_error)
|
||||
|
||||
# check emotion is invalid
|
||||
raised_error = False
|
||||
try:
|
||||
_ = tts.tts(text="This is a test.", speed=2.0, emotion="No Emo") # should raise error with speed > 2.0
|
||||
except ValueError:
|
||||
raised_error = True
|
||||
self.assertTrue(raised_error)
|
||||
|
||||
# check valid call
|
||||
wav = tts.tts(text="This is a test.", speed=2.0, emotion="Sad")
|
||||
self.assertGreater(len(wav), 0)
|
||||
|
||||
def test_multi_speaker_multi_lingual_model(self):
|
||||
tts = TTS()
|
||||
tts.load_tts_model_by_name(tts.models[0]) # YourTTS
|
||||
|
|
Loading…
Reference in New Issue