mirror of https://github.com/coqui-ai/TTS.git
new Benchmark notebook
parent
e02fc51fde
commit
a757c6240e
|
@ -20,9 +20,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"TTS_PATH = \"/home/erogol/projects/\"\n",
|
||||
|
@ -33,7 +31,6 @@
|
|||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"scrolled": true
|
||||
},
|
||||
"outputs": [],
|
||||
|
@ -45,6 +42,7 @@
|
|||
"import io\n",
|
||||
"import torch \n",
|
||||
"import time\n",
|
||||
"import json\n",
|
||||
"import numpy as np\n",
|
||||
"from collections import OrderedDict\n",
|
||||
"from matplotlib import pylab as plt\n",
|
||||
|
@ -72,23 +70,23 @@
|
|||
"from IPython.display import Audio\n",
|
||||
"\n",
|
||||
"import os\n",
|
||||
"os.environ['CUDA_VISIBLE_DEVICES']='1'\n",
|
||||
"os.environ['OMP_NUM_THREADS']='1'\n"
|
||||
"os.environ['CUDA_VISIBLE_DEVICES']='1'"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def tts(model, text, CONFIG, use_cuda, ap, use_gl, speaker_id=None, figures=True):\n",
|
||||
"def tts(model, text, CONFIG, use_cuda, ap, use_gl, figures=True):\n",
|
||||
" t_1 = time.time()\n",
|
||||
" waveform, alignment, mel_spec, mel_postnet_spec, stop_tokens = synthesis(model, text, CONFIG, use_cuda, ap, truncated=False, speaker_id=speaker_id, enable_eos_bos_chars=CONFIG.enable_eos_bos_chars)\n",
|
||||
" waveform, alignment, mel_spec, mel_postnet_spec, stop_tokens = synthesis(model, text, CONFIG, use_cuda, ap, speaker_id, False, CONFIG.enable_eos_bos_chars)\n",
|
||||
" if CONFIG.model == \"Tacotron\" and not use_gl:\n",
|
||||
" # coorect the normalization differences b/w TTS and the Vocoder.\n",
|
||||
" mel_postnet_spec = ap.out_linear_to_mel(mel_postnet_spec.T).T\n",
|
||||
" mel_postnet_spec = ap._denormalize(mel_postnet_spec)\n",
|
||||
" mel_postnet_spec = ap_vocoder._normalize(mel_postnet_spec)\n",
|
||||
" if not use_gl:\n",
|
||||
" waveform = wavernn.generate(torch.FloatTensor(mel_postnet_spec.T).unsqueeze(0).cuda(), batched=batched_wavernn, target=11000, overlap=550)\n",
|
||||
"\n",
|
||||
|
@ -106,19 +104,17 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Set constants\n",
|
||||
"ROOT_PATH = '/media/erogol/data_ssd/Data/models/mozilla_models/4845/'\n",
|
||||
"MODEL_PATH = ROOT_PATH + 'best_model.pth.tar'\n",
|
||||
"ROOT_PATH = '/media/erogol/data_ssd/Models/libri_tts/5049/'\n",
|
||||
"MODEL_PATH = ROOT_PATH + '/best_model.pth.tar'\n",
|
||||
"CONFIG_PATH = ROOT_PATH + '/config.json'\n",
|
||||
"OUT_FOLDER = \"/home/erogol/Dropbox/AudioSamples/benchmark_samples/\"\n",
|
||||
"OUT_FOLDER = '/home/erogol/Dropbox/AudioSamples/benchmark_samples/'\n",
|
||||
"CONFIG = load_config(CONFIG_PATH)\n",
|
||||
"VOCODER_MODEL_PATH = \"/media/erogol/data_ssd/Data/models/wavernn/mozilla/mozilla-May24-4763/model_checkpoints/best_model.pth.tar\"\n",
|
||||
"VOCODER_CONFIG_PATH = \"/media/erogol/data_ssd/Data/models/wavernn/mozilla/mozilla-May24-4763/config.json\"\n",
|
||||
"VOCODER_MODEL_PATH = \"/media/erogol/data_ssd/Models/wavernn/universal/4910/best_model_16K.pth.tar\"\n",
|
||||
"VOCODER_CONFIG_PATH = \"/media/erogol/data_ssd/Models/wavernn/universal/4910/config_16K.json\"\n",
|
||||
"VOCODER_CONFIG = load_config(VOCODER_CONFIG_PATH)\n",
|
||||
"use_cuda = False\n",
|
||||
"\n",
|
||||
|
@ -126,6 +122,8 @@
|
|||
"# CONFIG.windowing = False\n",
|
||||
"# CONFIG.prenet_dropout = False\n",
|
||||
"# CONFIG.separate_stopnet = True\n",
|
||||
"# CONFIG.use_forward_attn = True\n",
|
||||
"# CONFIG.forward_attn_mask = True\n",
|
||||
"# CONFIG.stopnet = True\n",
|
||||
"\n",
|
||||
"# Set the vocoder\n",
|
||||
|
@ -136,17 +134,23 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# LOAD TTS MODEL\n",
|
||||
"from utils.text.symbols import symbols, phonemes\n",
|
||||
"\n",
|
||||
"# multi speaker \n",
|
||||
"if CONFIG.use_speaker_embedding:\n",
|
||||
" speakers = json.load(open(f\"{ROOT_PATH}/speakers.json\", 'r'))\n",
|
||||
" speakers_idx_to_id = {v: k for k, v in speakers.items()}\n",
|
||||
"else:\n",
|
||||
" speakers = []\n",
|
||||
" speaker_id = None\n",
|
||||
"\n",
|
||||
"# load the model\n",
|
||||
"num_chars = len(phonemes) if CONFIG.use_phonemes else len(symbols)\n",
|
||||
"model = setup_model(num_chars, CONFIG)\n",
|
||||
"model = setup_model(num_chars, len(speakers), CONFIG)\n",
|
||||
"\n",
|
||||
"# load the audio processor\n",
|
||||
"ap = AudioProcessor(**CONFIG.audio) \n",
|
||||
|
@ -163,39 +167,45 @@
|
|||
"if use_cuda:\n",
|
||||
" model.cuda()\n",
|
||||
"model.eval()\n",
|
||||
"print(cp['step'])"
|
||||
"print(cp['step'])\n",
|
||||
"print(cp['r'])\n",
|
||||
"\n",
|
||||
"# set model stepsize \n",
|
||||
"if 'r' in cp:\n",
|
||||
" model.decoder.set_r(cp['r'])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# LOAD WAVERNN\n",
|
||||
"if use_gl == False:\n",
|
||||
" from WaveRNN.models.wavernn import Model\n",
|
||||
" from WaveRNN.utils.audio import AudioProcessor as AudioProcessorVocoder\n",
|
||||
" bits = 10\n",
|
||||
"\n",
|
||||
" ap_vocoder = AudioProcessorVocoder(**VOCODER_CONFIG.audio) \n",
|
||||
" wavernn = Model(\n",
|
||||
" rnn_dims=512,\n",
|
||||
" fc_dims=512,\n",
|
||||
" mode=\"mold\",\n",
|
||||
" pad=2,\n",
|
||||
" upsample_factors=VOCODER_CONFIG.upsample_factors, # set this depending on dataset\n",
|
||||
" mode=VOCODER_CONFIG.mode,\n",
|
||||
" mulaw=VOCODER_CONFIG.mulaw,\n",
|
||||
" pad=VOCODER_CONFIG.pad,\n",
|
||||
" upsample_factors=VOCODER_CONFIG.upsample_factors,\n",
|
||||
" feat_dims=VOCODER_CONFIG.audio[\"num_mels\"],\n",
|
||||
" compute_dims=128,\n",
|
||||
" res_out_dims=128,\n",
|
||||
" res_blocks=10,\n",
|
||||
" hop_length=ap.hop_length,\n",
|
||||
" sample_rate=ap.sample_rate,\n",
|
||||
" hop_length=ap_vocoder.hop_length,\n",
|
||||
" sample_rate=ap_vocoder.sample_rate,\n",
|
||||
" use_upsample_net = True,\n",
|
||||
" use_aux_net = True\n",
|
||||
" ).cuda()\n",
|
||||
"\n",
|
||||
"\n",
|
||||
" check = torch.load(VOCODER_MODEL_PATH)\n",
|
||||
" wavernn.load_state_dict(check['model'])\n",
|
||||
" wavernn.load_state_dict(check['model'], strict=False)\n",
|
||||
" if use_cuda:\n",
|
||||
" wavernn.cuda()\n",
|
||||
" wavernn.eval();\n",
|
||||
|
@ -209,70 +219,75 @@
|
|||
"### Comparision with https://mycroft.ai/blog/available-voices/"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"model.eval()\n",
|
||||
"model.decoder.max_decoder_steps = 2000\n",
|
||||
"speaker_id = 500\n",
|
||||
"sentence = \"Bill got in the habit of asking himself “Is that thought true?” and if he wasn’t absolutely certain it was, he just let it go.\"\n",
|
||||
"align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"scrolled": false
|
||||
"scrolled": true
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"model.eval()\n",
|
||||
"model.decoder.max_decoder_steps = 2000\n",
|
||||
"speaker_id = 0\n",
|
||||
"sentence = \"Bill got in the habit of asking himself “Is that thought true?” And if he wasn’t absolutely certain it was, he just let it go.\"\n",
|
||||
"align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)"
|
||||
"sentence = \"Seine Fuerenden Berater hatten Donald Trump seit Wochen beschworen, berichteten US-Medien: Lassen Sie das mit den Zoellen bleiben.\"\n",
|
||||
"align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"scrolled": true
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"sentence = \"Be a voice, not an echo.\" # 'echo' is not in training set. \n",
|
||||
"align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)"
|
||||
"sentence = \"Der Klimawandel bedroht die Gletscher im Himalaya.\"\n",
|
||||
"align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"sentence = \"The human voice is the most perfect instrument of all.\"\n",
|
||||
"align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)"
|
||||
"sentence = \"Zwei Unternehmen verlieren einem Medienbericht zufolge ihre Verträge als Maut-Inkasso-Manager.\" # 'echo' is not in training set. \n",
|
||||
"align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"sentence = \"I'm sorry Dave. I'm afraid I can't do that.\"\n",
|
||||
"align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)"
|
||||
"sentence = \"Eine Ausländermaut nach dem Geschmack der CSU wird es nicht geben - das bedauert außerhalb der Partei fast niemand.\"\n",
|
||||
"align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"scrolled": true
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"sentence = \"This cake is great. It's so delicious and moist.\"\n",
|
||||
"align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)"
|
||||
"sentence = \"Angela Merkel ist als Klimakanzlerin gestartet.\"\n",
|
||||
"align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -285,61 +300,51 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"sentence = \"Generative adversarial network or variational auto-encoder.\"\n",
|
||||
"align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)"
|
||||
"sentence = \"Dann vernachlässigte sie das Thema.\"\n",
|
||||
"align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"sentence = \"Scientists at the CERN laboratory say they have discovered a new particle.\"\n",
|
||||
"align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)"
|
||||
"sentence = \"Nun, kurz vor dem Ende, will sie damit noch einmal neu anfangen.\"\n",
|
||||
"align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"sentence = \"Here’s a way to measure the acute emotional intelligence that has never gone out of style.\"\n",
|
||||
"align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)"
|
||||
"sentence = \"Nun ist der Spieltempel pleite, und manchen Dorfbewohnern fehlt das Geld zum Essen.\"\n",
|
||||
"align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"sentence = \"President Trump met with other leaders at the Group of 20 conference.\"\n",
|
||||
"align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)"
|
||||
"sentence = \"Andrea Nahles will in der Fraktion die Vertrauensfrage stellen.\"\n",
|
||||
"align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"sentence = \"The buses aren't the problem, they actually provide a solution.\"\n",
|
||||
"align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)"
|
||||
"sentence=\"Die Erfolge der Grünen bringen eine Reihe Unerfahrener in die Parlamente.\"\n",
|
||||
"align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -352,212 +357,27 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"sentence = \"Generative adversarial network or variational auto-encoder.\"\n",
|
||||
"align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"sentence = \"Basilar membrane and otolaryngology are not auto-correlations.\"\n",
|
||||
"align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"sentence = \" He has read the whole thing.\"\n",
|
||||
"align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"sentence = \"He reads books.\"\n",
|
||||
"align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"scrolled": false
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"sentence = \"Thisss isrealy awhsome.\"\n",
|
||||
"align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"scrolled": false
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"sentence = \"This is your internet browser, Firefox.\"\n",
|
||||
"align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"sentence = \"This is your internet browser Firefox.\"\n",
|
||||
"align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"sentence = \"The quick brown fox jumps over the lazy dog.\"\n",
|
||||
"align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"sentence = \"Does the quick brown fox jump over the lazy dog?\"\n",
|
||||
"align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"sentence = \"Eren, how are you?\"\n",
|
||||
"align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Hard Sentences"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"sentence = \"Encouraged, he started with a minute a day.\"\n",
|
||||
"align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)"
|
||||
"sentence=\"Die Luftfahrtbranche arbeitet daran, CO2-neutral zu werden.\"\n",
|
||||
"align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"sentence = \"His meditation consisted of “body scanning” which involved focusing his mind and energy on each section of the body from head to toe .\"\n",
|
||||
"align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)"
|
||||
"sentence=\"Michael Kretschmer versucht seit Monaten, die Bürger zu umgarnen.\"\n",
|
||||
"align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"sentence = \"Recent research at Harvard has shown meditating for as little as 8 weeks can actually increase the grey matter in the parts of the brain responsible for emotional regulation and learning . \"\n",
|
||||
"align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"sentence = \"If he decided to watch TV he really watched it.\"\n",
|
||||
"align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true,
|
||||
"scrolled": true
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"sentence = \"Often we try to bring about change through sheer effort and we put all of our energy into a new initiative .\"\n",
|
||||
"align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# for twb dataset\n",
|
||||
"sentence = \"In our preparation for Easter, God in his providence offers us each year the season of Lent as a sacramental sign of our conversion.\"\n",
|
||||
"align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, speaker_id=speaker_id, use_gl=use_gl, figures=True)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# !zip benchmark_samples/samples.zip benchmark_samples/*"
|
||||
|
@ -566,9 +386,9 @@
|
|||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3(mztts)",
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "mztts"
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
|
@ -580,9 +400,9 @@
|
|||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.6.8"
|
||||
"version": "3.7.3"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
"nbformat_minor": 4
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue