mirror of https://github.com/coqui-ai/TTS.git
black formatting
parent
c34c8137d7
commit
9c18e40f64
|
@ -10,6 +10,7 @@ from random import randrange
|
|||
import numpy as np
|
||||
import torch
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from TTS.tts.datasets.preprocess import load_meta_data
|
||||
from TTS.tts.datasets.TTSDataset import MyDataset
|
||||
from TTS.tts.layers.losses import TacotronLoss
|
||||
|
@ -22,10 +23,8 @@ from TTS.tts.utils.text.symbols import make_symbols, phonemes, symbols
|
|||
from TTS.tts.utils.visual import plot_alignment, plot_spectrogram
|
||||
from TTS.utils.arguments import init_training
|
||||
from TTS.utils.audio import AudioProcessor
|
||||
from TTS.utils.distribute import (DistributedSampler, apply_gradient_allreduce,
|
||||
init_distributed, reduce_tensor)
|
||||
from TTS.utils.generic_utils import (KeepAverage, count_parameters,
|
||||
remove_experiment_folder, set_init_dict)
|
||||
from TTS.utils.distribute import DistributedSampler, apply_gradient_allreduce, init_distributed, reduce_tensor
|
||||
from TTS.utils.generic_utils import KeepAverage, count_parameters, remove_experiment_folder, set_init_dict
|
||||
from TTS.utils.radam import RAdam
|
||||
from TTS.utils.training import (
|
||||
NoamLR,
|
||||
|
@ -47,13 +46,12 @@ def setup_loader(ap, r, is_val=False, verbose=False, dataset=None):
|
|||
dataset = MyDataset(
|
||||
r,
|
||||
config.text_cleaner,
|
||||
compute_linear_spec=config.model.lower() == 'tacotron',
|
||||
compute_linear_spec=config.model.lower() == "tacotron",
|
||||
meta_data=meta_data_eval if is_val else meta_data_train,
|
||||
ap=ap,
|
||||
tp=config.characters,
|
||||
add_blank=config['add_blank'],
|
||||
batch_group_size=0 if is_val else config.batch_group_size *
|
||||
config.batch_size,
|
||||
add_blank=config["add_blank"],
|
||||
batch_group_size=0 if is_val else config.batch_group_size * config.batch_size,
|
||||
min_seq_len=config.min_seq_len,
|
||||
max_seq_len=config.max_seq_len,
|
||||
phoneme_cache_path=config.phoneme_cache_path,
|
||||
|
@ -61,11 +59,12 @@ def setup_loader(ap, r, is_val=False, verbose=False, dataset=None):
|
|||
phoneme_language=config.phoneme_language,
|
||||
enable_eos_bos=config.enable_eos_bos_chars,
|
||||
verbose=verbose,
|
||||
speaker_mapping=(speaker_mapping if (
|
||||
config.use_speaker_embedding
|
||||
and config.use_external_speaker_embedding_file
|
||||
) else None)
|
||||
)
|
||||
speaker_mapping=(
|
||||
speaker_mapping
|
||||
if (config.use_speaker_embedding and config.use_external_speaker_embedding_file)
|
||||
else None
|
||||
),
|
||||
)
|
||||
|
||||
if config.use_phonemes and config.compute_input_seq_cache:
|
||||
# precompute phonemes to have a better estimate of sequence lengths.
|
||||
|
@ -80,9 +79,9 @@ def setup_loader(ap, r, is_val=False, verbose=False, dataset=None):
|
|||
collate_fn=dataset.collate_fn,
|
||||
drop_last=False,
|
||||
sampler=sampler,
|
||||
num_workers=config.num_val_loader_workers
|
||||
if is_val else config.num_loader_workers,
|
||||
pin_memory=False)
|
||||
num_workers=config.num_val_loader_workers if is_val else config.num_loader_workers,
|
||||
pin_memory=False,
|
||||
)
|
||||
return loader
|
||||
|
||||
|
||||
|
@ -111,10 +110,8 @@ def format_data(data):
|
|||
speaker_ids = None
|
||||
|
||||
# set stop targets view, we predict a single stop token per iteration.
|
||||
stop_targets = stop_targets.view(text_input.shape[0],
|
||||
stop_targets.size(1) // config.r, -1)
|
||||
stop_targets = (stop_targets.sum(2) >
|
||||
0.0).unsqueeze(2).float().squeeze(2)
|
||||
stop_targets = stop_targets.view(text_input.shape[0], stop_targets.size(1) // config.r, -1)
|
||||
stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float().squeeze(2)
|
||||
|
||||
# dispatch data to GPU
|
||||
if use_cuda:
|
||||
|
@ -148,8 +145,7 @@ def train(data_loader, model, criterion, optimizer, optimizer_st, scheduler, ap,
|
|||
epoch_time = 0
|
||||
keep_avg = KeepAverage()
|
||||
if use_cuda:
|
||||
batch_n_iter = int(
|
||||
len(data_loader.dataset) / (config.batch_size * num_gpus))
|
||||
batch_n_iter = int(len(data_loader.dataset) / (config.batch_size * num_gpus))
|
||||
else:
|
||||
batch_n_iter = int(len(data_loader.dataset) / config.batch_size)
|
||||
end_time = time.time()
|
||||
|
@ -185,8 +181,21 @@ def train(data_loader, model, criterion, optimizer, optimizer_st, scheduler, ap,
|
|||
with torch.cuda.amp.autocast(enabled=config.mixed_precision):
|
||||
# forward pass model
|
||||
if config.bidirectional_decoder or config.double_decoder_consistency:
|
||||
decoder_output, postnet_output, alignments, stop_tokens, decoder_backward_output, alignments_backward = model(
|
||||
text_input, text_lengths, mel_input, mel_lengths, speaker_ids=speaker_ids, speaker_embeddings=speaker_embeddings)
|
||||
(
|
||||
decoder_output,
|
||||
postnet_output,
|
||||
alignments,
|
||||
stop_tokens,
|
||||
decoder_backward_output,
|
||||
alignments_backward,
|
||||
) = model(
|
||||
text_input,
|
||||
text_lengths,
|
||||
mel_input,
|
||||
mel_lengths,
|
||||
speaker_ids=speaker_ids,
|
||||
speaker_embeddings=speaker_embeddings,
|
||||
)
|
||||
else:
|
||||
decoder_output, postnet_output, alignments, stop_tokens = model(
|
||||
text_input,
|
||||
|
@ -239,7 +248,7 @@ def train(data_loader, model, criterion, optimizer, optimizer_st, scheduler, ap,
|
|||
|
||||
# stopnet optimizer step
|
||||
if config.separate_stopnet:
|
||||
scaler_st.scale(loss_dict['stopnet_loss']).backward()
|
||||
scaler_st.scale(loss_dict["stopnet_loss"]).backward()
|
||||
scaler.unscale_(optimizer_st)
|
||||
optimizer_st, _ = adam_weight_decay(optimizer_st)
|
||||
grad_norm_st, _ = check_update(model.decoder.stopnet, 1.0)
|
||||
|
@ -256,7 +265,7 @@ def train(data_loader, model, criterion, optimizer, optimizer_st, scheduler, ap,
|
|||
|
||||
# stopnet optimizer step
|
||||
if config.separate_stopnet:
|
||||
loss_dict['stopnet_loss'].backward()
|
||||
loss_dict["stopnet_loss"].backward()
|
||||
optimizer_st, _ = adam_weight_decay(optimizer_st)
|
||||
grad_norm_st, _ = check_update(model.decoder.stopnet, 1.0)
|
||||
optimizer_st.step()
|
||||
|
@ -272,10 +281,12 @@ def train(data_loader, model, criterion, optimizer, optimizer_st, scheduler, ap,
|
|||
|
||||
# aggregate losses from processes
|
||||
if num_gpus > 1:
|
||||
loss_dict['postnet_loss'] = reduce_tensor(loss_dict['postnet_loss'].data, num_gpus)
|
||||
loss_dict['decoder_loss'] = reduce_tensor(loss_dict['decoder_loss'].data, num_gpus)
|
||||
loss_dict['loss'] = reduce_tensor(loss_dict['loss'] .data, num_gpus)
|
||||
loss_dict['stopnet_loss'] = reduce_tensor(loss_dict['stopnet_loss'].data, num_gpus) if config.stopnet else loss_dict['stopnet_loss']
|
||||
loss_dict["postnet_loss"] = reduce_tensor(loss_dict["postnet_loss"].data, num_gpus)
|
||||
loss_dict["decoder_loss"] = reduce_tensor(loss_dict["decoder_loss"].data, num_gpus)
|
||||
loss_dict["loss"] = reduce_tensor(loss_dict["loss"].data, num_gpus)
|
||||
loss_dict["stopnet_loss"] = (
|
||||
reduce_tensor(loss_dict["stopnet_loss"].data, num_gpus) if config.stopnet else loss_dict["stopnet_loss"]
|
||||
)
|
||||
|
||||
# detach loss values
|
||||
loss_dict_new = dict()
|
||||
|
@ -321,17 +332,26 @@ def train(data_loader, model, criterion, optimizer, optimizer_st, scheduler, ap,
|
|||
if global_step % config.save_step == 0:
|
||||
if config.checkpoint:
|
||||
# save model
|
||||
save_checkpoint(model, optimizer, global_step, epoch, model.decoder.r, OUT_PATH,
|
||||
optimizer_st=optimizer_st,
|
||||
model_loss=loss_dict['postnet_loss'],
|
||||
characters=model_characters,
|
||||
scaler=scaler.state_dict() if config.mixed_precision else None)
|
||||
save_checkpoint(
|
||||
model,
|
||||
optimizer,
|
||||
global_step,
|
||||
epoch,
|
||||
model.decoder.r,
|
||||
OUT_PATH,
|
||||
optimizer_st=optimizer_st,
|
||||
model_loss=loss_dict["postnet_loss"],
|
||||
characters=model_characters,
|
||||
scaler=scaler.state_dict() if config.mixed_precision else None,
|
||||
)
|
||||
|
||||
# Diagnostic visualizations
|
||||
const_spec = postnet_output[0].data.cpu().numpy()
|
||||
gt_spec = linear_input[0].data.cpu().numpy() if config.model in [
|
||||
"Tacotron", "TacotronGST"
|
||||
] else mel_input[0].data.cpu().numpy()
|
||||
gt_spec = (
|
||||
linear_input[0].data.cpu().numpy()
|
||||
if config.model in ["Tacotron", "TacotronGST"]
|
||||
else mel_input[0].data.cpu().numpy()
|
||||
)
|
||||
align_img = alignments[0].data.cpu().numpy()
|
||||
|
||||
figures = {
|
||||
|
@ -341,7 +361,9 @@ def train(data_loader, model, criterion, optimizer, optimizer_st, scheduler, ap,
|
|||
}
|
||||
|
||||
if config.bidirectional_decoder or config.double_decoder_consistency:
|
||||
figures["alignment_backward"] = plot_alignment(alignments_backward[0].data.cpu().numpy(), output_fig=False)
|
||||
figures["alignment_backward"] = plot_alignment(
|
||||
alignments_backward[0].data.cpu().numpy(), output_fig=False
|
||||
)
|
||||
|
||||
tb_logger.tb_train_figures(global_step, figures)
|
||||
|
||||
|
@ -350,9 +372,7 @@ def train(data_loader, model, criterion, optimizer, optimizer_st, scheduler, ap,
|
|||
train_audio = ap.inv_spectrogram(const_speconfig.T)
|
||||
else:
|
||||
train_audio = ap.inv_melspectrogram(const_speconfig.T)
|
||||
tb_logger.tb_train_audios(global_step,
|
||||
{'TrainAudio': train_audio},
|
||||
config.audio["sample_rate"])
|
||||
tb_logger.tb_train_audios(global_step, {"TrainAudio": train_audio}, config.audio["sample_rate"])
|
||||
end_time = time.time()
|
||||
|
||||
# print epoch stats
|
||||
|
@ -395,8 +415,16 @@ def evaluate(data_loader, model, criterion, ap, global_step, epoch):
|
|||
|
||||
# forward pass model
|
||||
if config.bidirectional_decoder or config.double_decoder_consistency:
|
||||
decoder_output, postnet_output, alignments, stop_tokens, decoder_backward_output, alignments_backward = model(
|
||||
text_input, text_lengths, mel_input, speaker_ids=speaker_ids, speaker_embeddings=speaker_embeddings)
|
||||
(
|
||||
decoder_output,
|
||||
postnet_output,
|
||||
alignments,
|
||||
stop_tokens,
|
||||
decoder_backward_output,
|
||||
alignments_backward,
|
||||
) = model(
|
||||
text_input, text_lengths, mel_input, speaker_ids=speaker_ids, speaker_embeddings=speaker_embeddings
|
||||
)
|
||||
else:
|
||||
decoder_output, postnet_output, alignments, stop_tokens = model(
|
||||
text_input, text_lengths, mel_input, speaker_ids=speaker_ids, speaker_embeddings=speaker_embeddings
|
||||
|
@ -438,10 +466,10 @@ def evaluate(data_loader, model, criterion, ap, global_step, epoch):
|
|||
|
||||
# aggregate losses from processes
|
||||
if num_gpus > 1:
|
||||
loss_dict['postnet_loss'] = reduce_tensor(loss_dict['postnet_loss'].data, num_gpus)
|
||||
loss_dict['decoder_loss'] = reduce_tensor(loss_dict['decoder_loss'].data, num_gpus)
|
||||
loss_dict["postnet_loss"] = reduce_tensor(loss_dict["postnet_loss"].data, num_gpus)
|
||||
loss_dict["decoder_loss"] = reduce_tensor(loss_dict["decoder_loss"].data, num_gpus)
|
||||
if config.stopnet:
|
||||
loss_dict['stopnet_loss'] = reduce_tensor(loss_dict['stopnet_loss'].data, num_gpus)
|
||||
loss_dict["stopnet_loss"] = reduce_tensor(loss_dict["stopnet_loss"].data, num_gpus)
|
||||
|
||||
# detach loss values
|
||||
loss_dict_new = dict()
|
||||
|
@ -465,9 +493,11 @@ def evaluate(data_loader, model, criterion, ap, global_step, epoch):
|
|||
# Diagnostic visualizations
|
||||
idx = np.random.randint(mel_input.shape[0])
|
||||
const_spec = postnet_output[idx].data.cpu().numpy()
|
||||
gt_spec = linear_input[idx].data.cpu().numpy() if config.model in [
|
||||
"Tacotron", "TacotronGST"
|
||||
] else mel_input[idx].data.cpu().numpy()
|
||||
gt_spec = (
|
||||
linear_input[idx].data.cpu().numpy()
|
||||
if config.model in ["Tacotron", "TacotronGST"]
|
||||
else mel_input[idx].data.cpu().numpy()
|
||||
)
|
||||
align_img = alignments[idx].data.cpu().numpy()
|
||||
|
||||
eval_figures = {
|
||||
|
@ -481,8 +511,7 @@ def evaluate(data_loader, model, criterion, ap, global_step, epoch):
|
|||
eval_audio = ap.inv_spectrogram(const_speconfig.T)
|
||||
else:
|
||||
eval_audio = ap.inv_melspectrogram(const_speconfig.T)
|
||||
tb_logger.tb_eval_audios(global_step, {"ValAudio": eval_audio},
|
||||
config.audio["sample_rate"])
|
||||
tb_logger.tb_eval_audios(global_step, {"ValAudio": eval_audio}, config.audio["sample_rate"])
|
||||
|
||||
# Plot Validation Stats
|
||||
|
||||
|
@ -510,13 +539,17 @@ def evaluate(data_loader, model, criterion, ap, global_step, epoch):
|
|||
test_figures = {}
|
||||
print(" | > Synthesizing test sentences")
|
||||
speaker_id = 0 if config.use_speaker_embedding else None
|
||||
speaker_embedding = speaker_mapping[list(speaker_mapping.keys())[randrange(len(speaker_mapping)-1)]]['embedding'] if config.use_external_speaker_embedding_file and config.use_speaker_embedding else None
|
||||
speaker_embedding = (
|
||||
speaker_mapping[list(speaker_mapping.keys())[randrange(len(speaker_mapping) - 1)]]["embedding"]
|
||||
if config.use_external_speaker_embedding_file and config.use_speaker_embedding
|
||||
else None
|
||||
)
|
||||
style_wav = config.get("gst_style_input")
|
||||
if style_wav is None and config.use_gst:
|
||||
# inicialize GST with zero dict.
|
||||
style_wav = {}
|
||||
print("WARNING: You don't provided a gst style wav, for this reason we use a zero tensor!")
|
||||
for i in range(config.gst['gst_num_style_tokens']):
|
||||
for i in range(config.gst["gst_num_style_tokens"]):
|
||||
style_wav[str(i)] = 0
|
||||
style_wav = config.get("gst_style_input")
|
||||
for idx, test_sentence in enumerate(test_sentences):
|
||||
|
@ -531,7 +564,7 @@ def evaluate(data_loader, model, criterion, ap, global_step, epoch):
|
|||
speaker_embedding=speaker_embedding,
|
||||
style_wav=style_wav,
|
||||
truncated=False,
|
||||
enable_eos_bos_chars=config.enable_eos_bos_chars, #pylint: disable=unused-argument
|
||||
enable_eos_bos_chars=config.enable_eos_bos_chars, # pylint: disable=unused-argument
|
||||
use_griffin_lim=True,
|
||||
do_trim_silence=False,
|
||||
)
|
||||
|
@ -546,8 +579,7 @@ def evaluate(data_loader, model, criterion, ap, global_step, epoch):
|
|||
except: # pylint: disable=bare-except
|
||||
print(" !! Error creating Test Sentence -", idx)
|
||||
traceback.print_exc()
|
||||
tb_logger.tb_test_audios(global_step, test_audios,
|
||||
config.audio['sample_rate'])
|
||||
tb_logger.tb_test_audios(global_step, test_audios, config.audio["sample_rate"])
|
||||
tb_logger.tb_test_figures(global_step, test_figures)
|
||||
return keep_avg.avg_values
|
||||
|
||||
|
@ -564,8 +596,7 @@ def main(args): # pylint: disable=redefined-outer-name
|
|||
|
||||
# DISTRUBUTED
|
||||
if num_gpus > 1:
|
||||
init_distributed(args.rank, num_gpus, args.group_id,
|
||||
config.distributed["backend"], config.distributed["url"])
|
||||
init_distributed(args.rank, num_gpus, args.group_id, config.distributed["backend"], config.distributed["url"])
|
||||
num_chars = len(phonemes) if config.use_phonemes else len(symbols)
|
||||
model_characters = phonemes if config.use_phonemes else symbols
|
||||
|
||||
|
@ -573,10 +604,10 @@ def main(args): # pylint: disable=redefined-outer-name
|
|||
meta_data_train, meta_data_eval = load_meta_data(config.datasets)
|
||||
|
||||
# set the portion of the data used for training
|
||||
if config.has('train_portion'):
|
||||
meta_data_train = meta_data_train[:int(len(meta_data_train) * config.train_portion)]
|
||||
if config.has('eval_portion'):
|
||||
meta_data_eval = meta_data_eval[:int(len(meta_data_eval) * config.eval_portion)]
|
||||
if config.has("train_portion"):
|
||||
meta_data_train = meta_data_train[: int(len(meta_data_train) * config.train_portion)]
|
||||
if config.has("eval_portion"):
|
||||
meta_data_eval = meta_data_eval[: int(len(meta_data_eval) * config.eval_portion)]
|
||||
|
||||
# parse speakers
|
||||
num_speakers, speaker_embedding_dim, speaker_mapping = parse_speakers(config, args, meta_data_train, OUT_PATH)
|
||||
|
@ -590,9 +621,7 @@ def main(args): # pylint: disable=redefined-outer-name
|
|||
params = set_weight_decay(model, config.wd)
|
||||
optimizer = RAdam(params, lr=config.lr, weight_decay=0)
|
||||
if config.stopnet and config.separate_stopnet:
|
||||
optimizer_st = RAdam(model.decoder.stopnet.parameters(),
|
||||
lr=config.lr,
|
||||
weight_decay=0)
|
||||
optimizer_st = RAdam(model.decoder.stopnet.parameters(), lr=config.lr, weight_decay=0)
|
||||
else:
|
||||
optimizer_st = None
|
||||
|
||||
|
@ -606,7 +635,7 @@ def main(args): # pylint: disable=redefined-outer-name
|
|||
model.load_state_dict(checkpoint["model"])
|
||||
# optimizer restore
|
||||
print(" > Restoring Optimizer...")
|
||||
optimizer.load_state_dict(checkpoint['optimizer'])
|
||||
optimizer.load_state_dict(checkpoint["optimizer"])
|
||||
if "scaler" in checkpoint and config.mixed_precision:
|
||||
print(" > Restoring AMP Scaler...")
|
||||
scaler.load_state_dict(checkpoint["scaler"])
|
||||
|
@ -622,10 +651,9 @@ def main(args): # pylint: disable=redefined-outer-name
|
|||
del model_dict
|
||||
|
||||
for group in optimizer.param_groups:
|
||||
group['lr'] = config.lr
|
||||
print(" > Model restored from step %d" % checkpoint['step'],
|
||||
flush=True)
|
||||
args.restore_step = checkpoint['step']
|
||||
group["lr"] = config.lr
|
||||
print(" > Model restored from step %d" % checkpoint["step"], flush=True)
|
||||
args.restore_step = checkpoint["step"]
|
||||
else:
|
||||
args.restore_step = 0
|
||||
|
||||
|
@ -638,9 +666,7 @@ def main(args): # pylint: disable=redefined-outer-name
|
|||
model = apply_gradient_allreduce(model)
|
||||
|
||||
if config.noam_schedule:
|
||||
scheduler = NoamLR(optimizer,
|
||||
warmup_steps=config.warmup_steps,
|
||||
last_epoch=args.restore_step - 1)
|
||||
scheduler = NoamLR(optimizer, warmup_steps=config.warmup_steps, last_epoch=args.restore_step - 1)
|
||||
else:
|
||||
scheduler = None
|
||||
|
||||
|
@ -693,9 +719,9 @@ def main(args): # pylint: disable=redefined-outer-name
|
|||
# eval one epoch
|
||||
eval_avg_loss_dict = evaluate(eval_loader, model, criterion, ap, global_step, epoch)
|
||||
c_logger.print_epoch_end(epoch, eval_avg_loss_dict)
|
||||
target_loss = train_avg_loss_dict['avg_postnet_loss']
|
||||
target_loss = train_avg_loss_dict["avg_postnet_loss"]
|
||||
if config.run_eval:
|
||||
target_loss = eval_avg_loss_dict['avg_postnet_loss']
|
||||
target_loss = eval_avg_loss_dict["avg_postnet_loss"]
|
||||
best_loss = save_best_model(
|
||||
target_loss,
|
||||
best_loss,
|
||||
|
@ -708,11 +734,11 @@ def main(args): # pylint: disable=redefined-outer-name
|
|||
model_characters,
|
||||
keep_all_best=keep_all_best,
|
||||
keep_after=keep_after,
|
||||
scaler=scaler.state_dict() if config.mixed_precision else None
|
||||
scaler=scaler.state_dict() if config.mixed_precision else None,
|
||||
)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
if __name__ == "__main__":
|
||||
args, config, OUT_PATH, AUDIO_PATH, c_logger, tb_logger = init_training(sys.argv)
|
||||
try:
|
||||
main(args)
|
||||
|
|
|
@ -6,8 +6,8 @@ import argparse
|
|||
import glob
|
||||
import json
|
||||
import os
|
||||
import sys
|
||||
import re
|
||||
import sys
|
||||
|
||||
from TTS.tts.utils.text.symbols import parse_symbols
|
||||
from TTS.utils.console_logger import ConsoleLogger
|
||||
|
@ -46,24 +46,14 @@ def init_arguments(argv):
|
|||
"Best model file to be used for extracting best loss."
|
||||
"If not specified, the latest best model in continue path is used"
|
||||
),
|
||||
default="")
|
||||
parser.add_argument("--config_path",
|
||||
type=str,
|
||||
help="Path to config file for training.",
|
||||
required="--continue_path" not in argv)
|
||||
parser.add_argument("--debug",
|
||||
type=bool,
|
||||
default=False,
|
||||
help="Do not verify commit integrity to run training.")
|
||||
default="",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--rank",
|
||||
type=int,
|
||||
default=0,
|
||||
help="DISTRIBUTED: process rank for distributed training.")
|
||||
parser.add_argument("--group_id",
|
||||
type=str,
|
||||
default="",
|
||||
help="DISTRIBUTED: process group id.")
|
||||
"--config_path", type=str, help="Path to config file for training.", required="--continue_path" not in argv
|
||||
)
|
||||
parser.add_argument("--debug", type=bool, default=False, help="Do not verify commit integrity to run training.")
|
||||
parser.add_argument("--rank", type=int, default=0, help="DISTRIBUTED: process rank for distributed training.")
|
||||
parser.add_argument("--group_id", type=str, default="", help="DISTRIBUTED: process group id.")
|
||||
|
||||
return parser
|
||||
|
||||
|
@ -157,8 +147,7 @@ def process_args(args):
|
|||
if config.mixed_precision:
|
||||
print(" > Mixed precision mode is ON")
|
||||
if not os.path.exists(config.output_path):
|
||||
experiment_path = create_experiment_folder(config.output_path,
|
||||
config.run_name, args.debug)
|
||||
experiment_path = create_experiment_folder(config.output_path, config.run_name, args.debug)
|
||||
else:
|
||||
experiment_path = config.output_path
|
||||
audio_path = os.path.join(experiment_path, "test_audios")
|
||||
|
@ -172,17 +161,15 @@ def process_args(args):
|
|||
# if model characters are not set in the config file
|
||||
# save the default set to the config file for future
|
||||
# compatibility.
|
||||
if config.has('characters_config'):
|
||||
if config.has("characters_config"):
|
||||
used_characters = parse_symbols()
|
||||
new_fields['characters'] = used_characters
|
||||
new_fields["characters"] = used_characters
|
||||
copy_model_files(config, args.config_path, experiment_path, new_fields)
|
||||
os.chmod(audio_path, 0o775)
|
||||
os.chmod(experiment_path, 0o775)
|
||||
tb_logger = TensorboardLogger(experiment_path,
|
||||
model_name=config.model)
|
||||
tb_logger = TensorboardLogger(experiment_path, model_name=config.model)
|
||||
# write model desc to tensorboard
|
||||
tb_logger.tb_add_text("model-description", config["run_description"],
|
||||
0)
|
||||
tb_logger.tb_add_text("model-description", config["run_description"], 0)
|
||||
c_logger = ConsoleLogger()
|
||||
return config, experiment_path, audio_path, c_logger, tb_logger
|
||||
|
||||
|
|
|
@ -73,14 +73,14 @@ def count_parameters(model):
|
|||
|
||||
def to_camel(text):
|
||||
text = text.capitalize()
|
||||
text = re.sub(r'(?!^)_([a-zA-Z])', lambda m: m.group(1).upper(), text)
|
||||
text = text.replace('Tts', 'TTS')
|
||||
text = re.sub(r"(?!^)_([a-zA-Z])", lambda m: m.group(1).upper(), text)
|
||||
text = text.replace("Tts", "TTS")
|
||||
return text
|
||||
|
||||
|
||||
def find_module(module_path: str, module_name: str) -> object:
|
||||
module_name = module_name.lower()
|
||||
module = importlib.import_module(module_path+'.'+module_name)
|
||||
module = importlib.import_module(module_path + "." + module_name)
|
||||
class_name = to_camel(module_name)
|
||||
return getattr(module, class_name)
|
||||
|
||||
|
@ -156,4 +156,3 @@ class KeepAverage:
|
|||
def update_values(self, value_dict):
|
||||
for key, value in value_dict.items():
|
||||
self.update_value(key, value)
|
||||
|
||||
|
|
|
@ -5,6 +5,7 @@ import re
|
|||
from shutil import copyfile
|
||||
|
||||
import yaml
|
||||
|
||||
from TTS.utils.generic_utils import find_module
|
||||
|
||||
from .generic_utils import find_module
|
||||
|
@ -32,8 +33,8 @@ def read_json_with_comments(json_path):
|
|||
with open(json_path, "r", encoding="utf-8") as f:
|
||||
input_str = f.read()
|
||||
# handle comments
|
||||
input_str = re.sub(r'\\\n', '', input_str)
|
||||
input_str = re.sub(r'//.*\n', '\n', input_str)
|
||||
input_str = re.sub(r"\\\n", "", input_str)
|
||||
input_str = re.sub(r"//.*\n", "\n", input_str)
|
||||
data = json.loads(input_str)
|
||||
return data
|
||||
|
||||
|
@ -44,20 +45,19 @@ def load_config(config_path: str) -> None:
|
|||
if ext in (".yml", ".yaml"):
|
||||
with open(config_path, "r", encoding="utf-8") as f:
|
||||
data = yaml.safe_load(f)
|
||||
elif ext == '.json':
|
||||
elif ext == ".json":
|
||||
with open(config_path, "r", encoding="utf-8") as f:
|
||||
input_str = f.read()
|
||||
data = json.loads(input_str)
|
||||
else:
|
||||
raise TypeError(f' [!] Unknown config file type {ext}')
|
||||
raise TypeError(f" [!] Unknown config file type {ext}")
|
||||
config_dict.update(data)
|
||||
config_class = find_module('TTS.tts.configs', config_dict['model'].lower()+'_config')
|
||||
config_class = find_module("TTS.tts.configs", config_dict["model"].lower() + "_config")
|
||||
config = config_class()
|
||||
config.from_dict(config_dict)
|
||||
return config
|
||||
|
||||
|
||||
|
||||
def copy_model_files(c, config_file, out_path, new_fields):
|
||||
"""Copy config.json and other model files to training folder and add
|
||||
new fields.
|
||||
|
|
Loading…
Reference in New Issue