added feature preprocessing if not set in config

pull/10/head
sanjaesc 2020-10-19 14:37:30 +02:00
parent 9a120f28ed
commit 995d84f6d7
4 changed files with 71 additions and 30 deletions

View File

@ -29,7 +29,12 @@ from TTS.utils.generic_utils import (
set_init_dict,
)
from TTS.vocoder.datasets.wavernn_dataset import WaveRNNDataset
from TTS.vocoder.datasets.preprocess import load_wav_data, load_wav_feat_data
from TTS.vocoder.datasets.preprocess import (
load_wav_data,
find_feat_files,
load_wav_feat_data,
preprocess_wav_files,
)
from TTS.vocoder.utils.distribution import discretized_mix_logistic_loss, gaussian_loss
from TTS.vocoder.utils.generic_utils import setup_wavernn
from TTS.vocoder.utils.io import save_best_model, save_checkpoint
@ -192,15 +197,17 @@ def train(model, optimizer, criterion, scheduler, ap, global_step, epoch):
)
predict_mel = ap.melspectrogram(sample_wav)
# Sample audio
tb_logger.tb_train_audios(
global_step, {"eval/audio": sample_wav}, CONFIG.audio["sample_rate"]
)
# compute spectrograms
figures = {
"prediction": plot_spectrogram(predict_mel.T),
"ground_truth": plot_spectrogram(ground_mel.T),
"train/ground_truth": plot_spectrogram(ground_mel.T),
"train/prediction": plot_spectrogram(predict_mel.T),
}
# Sample audio
tb_logger.tb_train_audios(
global_step, {"train/audio": sample_wav}, CONFIG.audio["sample_rate"]
)
tb_logger.tb_train_figures(global_step, figures)
end_time = time.time()
@ -235,7 +242,6 @@ def evaluate(model, criterion, ap, global_step, epoch):
global_step += 1
y_hat = model(x, m)
y_hat_viz = y_hat # for vizualization
if isinstance(model.mode, int):
y_hat = y_hat.transpose(1, 2).unsqueeze(-1)
else:
@ -263,11 +269,11 @@ def evaluate(model, criterion, ap, global_step, epoch):
if CONFIG.print_eval:
c_logger.print_eval_step(num_iter, loss_dict, keep_avg.avg_values)
if epoch > CONFIG.test_delay_epochs:
# synthesize a full voice
wav_path = train_data[random.randrange(0, len(train_data))][0]
if epoch % CONFIG.test_every_epochs == 0:
# synthesize a part of data
wav_path = eval_data[random.randrange(0, len(eval_data))][0]
wav = ap.load_wav(wav_path)
ground_mel = ap.melspectrogram(wav)
ground_mel = ap.melspectrogram(wav[:22000])
sample_wav = model.generate(
ground_mel,
CONFIG.batched,
@ -276,15 +282,17 @@ def evaluate(model, criterion, ap, global_step, epoch):
)
predict_mel = ap.melspectrogram(sample_wav)
# compute spectrograms
figures = {
"eval/ground_truth": plot_spectrogram(ground_mel.T),
"eval/prediction": plot_spectrogram(predict_mel.T),
}
# Sample audio
tb_logger.tb_eval_audios(
global_step, {"eval/audio": sample_wav}, CONFIG.audio["sample_rate"]
)
# compute spectrograms
figures = {
"eval/prediction": plot_spectrogram(predict_mel.T),
"eval/ground_truth": plot_spectrogram(ground_mel.T),
}
tb_logger.tb_eval_figures(global_step, figures)
tb_logger.tb_eval_stats(global_step, keep_avg.avg_values)
@ -296,6 +304,9 @@ def main(args): # pylint: disable=redefined-outer-name
# pylint: disable=global-variable-undefined
global train_data, eval_data
# setup audio processor
ap = AudioProcessor(**CONFIG.audio)
print(f" > Loading wavs from: {CONFIG.data_path}")
if CONFIG.feature_path is not None:
print(f" > Loading features from: {CONFIG.feature_path}")
@ -303,11 +314,20 @@ def main(args): # pylint: disable=redefined-outer-name
CONFIG.data_path, CONFIG.feature_path, CONFIG.eval_split_size
)
else:
eval_data, train_data = load_wav_data(CONFIG.data_path, CONFIG.eval_split_size)
# setup audio processor
ap = AudioProcessor(**CONFIG.audio)
mel_feat_path = os.path.join(OUT_PATH, "mel")
feat_data = find_feat_files(mel_feat_path)
if feat_data:
print(f" > Loading features from: {mel_feat_path}")
eval_data, train_data = load_wav_feat_data(
CONFIG.data_path, mel_feat_path, CONFIG.eval_split_size
)
else:
print(f" > No feature data found. Preprocessing...")
# preprocessing feature data from given wav files
preprocess_wav_files(OUT_PATH, CONFIG, ap)
eval_data, train_data = load_wav_feat_data(
CONFIG.data_path, mel_feat_path, CONFIG.eval_split_size
)
# setup model
model_wavernn = setup_wavernn(CONFIG)

View File

@ -55,18 +55,17 @@
"padding": 2, // pad the input for resnet to see wider input length
// DATASET
"use_gta": true, // use computed gta features from the tts model
"data_path": "/media/alexander/LinuxFS/SpeechData/GothicSpeech/NPC_Speech/", // path containing training wav files
"feature_path": "/media/alexander/LinuxFS/SpeechData/GothicSpeech/NPC_Speech_Computed/mel/", // path containing computed features .npy (mels / quant)
//"use_gta": true, // use computed gta features from the tts model
"data_path": "path/to/wav/files", // path containing training wav files
"feature_path": null, // path containing computed features from wav files if null compute them
// TRAINING
"batch_size": 64, // Batch size for training. Lower values than 32 might cause hard to learn attention.
"epochs": 10000, // total number of epochs to train.
"warmup_steps": 10,
// VALIDATION
"run_eval": true,
"test_delay_epochs": 10, // early testing only wastes computation time.
"test_every_epochs": 10, // Test after set number of epochs (Test every 20 epochs for example)
// OPTIMIZER
"grad_clip": 4, // apply gradient clipping if > 0
@ -90,6 +89,6 @@
"eval_split_size": 50, // number of samples for testing
// PATHS
"output_path": "/media/alexander/LinuxFS/Projects/wavernn/Trainings/"
"output_path": "output/training/path"
}

View File

@ -1,17 +1,38 @@
import glob
import os
from pathlib import Path
from tqdm import tqdm
import numpy as np
def preprocess_wav_files(out_path, config, ap):
os.makedirs(os.path.join(out_path, "quant"), exist_ok=True)
os.makedirs(os.path.join(out_path, "mel"), exist_ok=True)
wav_files = find_wav_files(config.data_path)
for path in tqdm(wav_files):
wav_name = Path(path).stem
quant_path = os.path.join(out_path, "quant", wav_name + ".npy")
mel_path = os.path.join(out_path, "mel", wav_name + ".npy")
y = ap.load_wav(path)
mel = ap.melspectrogram(y)
np.save(mel_path, mel)
if isinstance(config.mode, int):
quant = (
ap.mulaw_encode(y, qc=config.mode)
if config.mulaw
else ap.quantize(y, bits=config.mode)
)
np.save(quant_path, quant)
def find_wav_files(data_path):
wav_paths = glob.glob(os.path.join(data_path, '**', '*.wav'), recursive=True)
wav_paths = glob.glob(os.path.join(data_path, "**", "*.wav"), recursive=True)
return wav_paths
def find_feat_files(data_path):
feat_paths = glob.glob(os.path.join(data_path, '**', '*.npy'), recursive=True)
feat_paths = glob.glob(os.path.join(data_path, "**", "*.npy"), recursive=True)
return feat_paths

View File

@ -48,6 +48,7 @@ class WaveRNNDataset(Dataset):
feat_path = self.item_list[index]
m = np.load(feat_path.replace("/quant/", "/mel/"))
if self.mode in ["gauss", "mold"]:
# x = np.load(feat_path.replace("/mel/", "/quant/"))
x = self.ap.load_wav(wavpath)
elif isinstance(self.mode, int):
x = np.load(feat_path.replace("/mel/", "/quant/"))