mirror of https://github.com/coqui-ai/TTS.git
[ci skip] config update #3 WIP
parent
a21c0b5585
commit
97bd5f9734
|
@ -14,6 +14,7 @@ from torch.utils.data import DataLoader
|
|||
from TTS.tts.datasets.preprocess import load_meta_data
|
||||
from TTS.tts.datasets.TTSDataset import MyDataset
|
||||
from TTS.tts.layers.losses import TacotronLoss
|
||||
from TTS.tts.configs.tacotron_config import TacotronConfig
|
||||
from TTS.tts.utils.generic_utils import setup_model
|
||||
from TTS.tts.utils.io import save_best_model, save_checkpoint
|
||||
from TTS.tts.utils.measures import alignment_diagonal_score
|
||||
|
|
|
@ -1,173 +1,126 @@
|
|||
{
|
||||
"model": "Tacotron2",
|
||||
"run_name": "ljspeech-ddc",
|
||||
"run_description": "tacotron2 with DDC and differential spectral loss.",
|
||||
|
||||
// AUDIO PARAMETERS
|
||||
"audio":{
|
||||
// stft parameters
|
||||
"fft_size": 1024, // number of stft frequency levels. Size of the linear spectogram frame.
|
||||
"win_length": 1024, // stft window length in ms.
|
||||
"hop_length": 256, // stft window hop-lengh in ms.
|
||||
"frame_length_ms": null, // stft window length in ms.If null, 'win_length' is used.
|
||||
"frame_shift_ms": null, // stft window hop-lengh in ms. If null, 'hop_length' is used.
|
||||
|
||||
// Audio processing parameters
|
||||
"sample_rate": 22050, // DATASET-RELATED: wav sample-rate.
|
||||
"preemphasis": 0.0, // pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis.
|
||||
"ref_level_db": 20, // reference level db, theoretically 20db is the sound of air.
|
||||
|
||||
// Silence trimming
|
||||
"do_trim_silence": true,// enable trimming of slience of audio as you load it. LJspeech (true), TWEB (false), Nancy (true)
|
||||
"trim_db": 60, // threshold for timming silence. Set this according to your dataset.
|
||||
|
||||
// Griffin-Lim
|
||||
"power": 1.5, // value to sharpen wav signals after GL algorithm.
|
||||
"griffin_lim_iters": 60,// #griffin-lim iterations. 30-60 is a good range. Larger the value, slower the generation.
|
||||
|
||||
// MelSpectrogram parameters
|
||||
"num_mels": 80, // size of the mel spec frame.
|
||||
"mel_fmin": 50.0, // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!!
|
||||
"mel_fmax": 7600.0, // maximum freq level for mel-spec. Tune for dataset!!
|
||||
"attention_heads": 4,
|
||||
"attention_norm": "sigmoid",
|
||||
"attention_type": "original",
|
||||
"audio_config": {
|
||||
"clip_norm": true,
|
||||
"do_trim_silence": true,
|
||||
"fft_size": 1024,
|
||||
"frame_length_ms": null,
|
||||
"frame_shift_ms": null,
|
||||
"griffin_lim_iters": 60,
|
||||
"hop_length": 256,
|
||||
"max_norm": 4,
|
||||
"mel_fmax": 7600,
|
||||
"mel_fmin": 50,
|
||||
"min_level_db": -100,
|
||||
"num_mels": 80,
|
||||
"power": 1.5,
|
||||
"preemphasis": 0,
|
||||
"ref_level_db": 20,
|
||||
"sample_rate": 22050,
|
||||
"signal_norm": true,
|
||||
"spec_gain": 1,
|
||||
|
||||
// Normalization parameters
|
||||
"signal_norm": true, // normalize spec values. Mean-Var normalization if 'stats_path' is defined otherwise range normalization defined by the other params.
|
||||
"min_level_db": -100, // lower bound for normalization
|
||||
"symmetric_norm": true, // move normalization to range [-1, 1]
|
||||
"max_norm": 4.0, // scale normalization to range [-max_norm, max_norm] or [0, max_norm]
|
||||
"clip_norm": true, // clip normalized values into the range.
|
||||
"stats_path": "/home/erogol/Data/LJSpeech-1.1/scale_stats.npy" // DO NOT USE WITH MULTI_SPEAKER MODEL. scaler stats file computed by 'compute_statistics.py'. If it is defined, mean-std based notmalization is used and other normalization params are ignored
|
||||
"stats_path": "/home/erogol/Data/LJSpeech-1.1/scale_stats.npy",
|
||||
"symmetric_norm": true,
|
||||
"trim_db": 60,
|
||||
"win_length": 1024
|
||||
},
|
||||
|
||||
// VOCABULARY PARAMETERS
|
||||
// if custom character set is not defined,
|
||||
// default set in symbols.py is used
|
||||
// "characters":{
|
||||
// "pad": "_",
|
||||
// "eos": "~",
|
||||
// "bos": "^",
|
||||
// "characters": "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz!'(),-.:;? ",
|
||||
// "punctuations":"!'(),-.:;? ",
|
||||
// "phonemes":"iyɨʉɯuɪʏʊeøɘəɵɤoɛœɜɞʌɔæɐaɶɑɒᵻʘɓǀɗǃʄǂɠǁʛpbtdʈɖcɟkɡqɢʔɴŋɲɳnɱmʙrʀⱱɾɽɸβfvθðszʃʒʂʐçʝxɣχʁħʕhɦɬɮʋɹɻjɰlɭʎʟˈˌːˑʍwɥʜʢʡɕʑɺɧɚ˞ɫ"
|
||||
// },
|
||||
|
||||
// DISTRIBUTED TRAINING
|
||||
"distributed":{
|
||||
"backend": "nccl",
|
||||
"url": "tcp:\/\/localhost:54321"
|
||||
},
|
||||
|
||||
"reinit_layers": [], // give a list of layer names to restore from the given checkpoint. If not defined, it reloads all heuristically matching layers.
|
||||
|
||||
// TRAINING
|
||||
"batch_size": 32, // Batch size for training. Lower values than 32 might cause hard to learn attention. It is overwritten by 'gradual_training'.
|
||||
"eval_batch_size":16,
|
||||
"r": 7, // Number of decoder frames to predict per iteration. Set the initial values if gradual training is enabled.
|
||||
"gradual_training": [[0, 7, 64], [1, 5, 64], [50000, 3, 32], [130000, 2, 32], [290000, 1, 32]], //set gradual training steps [first_step, r, batch_size]. If it is null, gradual training is disabled. For Tacotron, you might need to reduce the 'batch_size' as you proceeed.
|
||||
"mixed_precision": true, // level of optimization with NVIDIA's apex feature for automatic mixed FP16/FP32 precision (AMP), NOTE: currently only O1 is supported, and use "O1" to activate.
|
||||
|
||||
// LOSS SETTINGS
|
||||
"loss_masking": true, // enable / disable loss masking against the sequence padding.
|
||||
"decoder_loss_alpha": 0.5, // original decoder loss weight. If > 0, it is enabled
|
||||
"postnet_loss_alpha": 0.25, // original postnet loss weight. If > 0, it is enabled
|
||||
"postnet_diff_spec_alpha": 0.25, // differential spectral loss weight. If > 0, it is enabled
|
||||
"decoder_diff_spec_alpha": 0.25, // differential spectral loss weight. If > 0, it is enabled
|
||||
"decoder_ssim_alpha": 0.5, // decoder ssim loss weight. If > 0, it is enabled
|
||||
"postnet_ssim_alpha": 0.25, // postnet ssim loss weight. If > 0, it is enabled
|
||||
"ga_alpha": 5.0, // weight for guided attention loss. If > 0, guided attention is enabled.
|
||||
"stopnet_pos_weight": 15.0, // pos class weight for stopnet loss since there are way more negative samples than positive samples.
|
||||
|
||||
|
||||
// VALIDATION
|
||||
"run_eval": true,
|
||||
"test_delay_epochs": 10, //Until attention is aligned, testing only wastes computation time.
|
||||
"test_sentences_file": null, // set a file to load sentences to be used for testing. If it is null then we use default english sentences.
|
||||
|
||||
// OPTIMIZER
|
||||
"noam_schedule": false, // use noam warmup and lr schedule.
|
||||
"grad_clip": 1.0, // upper limit for gradients for clipping.
|
||||
"epochs": 1000, // total number of epochs to train.
|
||||
"lr": 0.0001, // Initial learning rate. If Noam decay is active, maximum learning rate.
|
||||
"wd": 0.000001, // Weight decay weight.
|
||||
"warmup_steps": 4000, // Noam decay steps to increase the learning rate from 0 to "lr"
|
||||
"seq_len_norm": false, // Normalize eash sample loss with its length to alleviate imbalanced datasets. Use it if your dataset is small or has skewed distribution of sequence lengths.
|
||||
|
||||
// TACOTRON PRENET
|
||||
"memory_size": -1, // ONLY TACOTRON - size of the memory queue used fro storing last decoder predictions for auto-regression. If < 0, memory queue is disabled and decoder only uses the last prediction frame.
|
||||
"prenet_type": "original", // "original" or "bn".
|
||||
"prenet_dropout": true, // enable/disable dropout at prenet.
|
||||
|
||||
// TACOTRON ATTENTION
|
||||
"attention_type": "original", // 'original' , 'graves', 'dynamic_convolution'
|
||||
"attention_heads": 4, // number of attention heads (only for 'graves')
|
||||
"attention_norm": "sigmoid", // softmax or sigmoid.
|
||||
"windowing": false, // Enables attention windowing. Used only in eval mode.
|
||||
"use_forward_attn": false, // if it uses forward attention. In general, it aligns faster.
|
||||
"forward_attn_mask": false, // Additional masking forcing monotonicity only in eval mode.
|
||||
"transition_agent": false, // enable/disable transition agent of forward attention.
|
||||
"location_attn": true, // enable_disable location sensitive attention. It is enabled for TACOTRON by default.
|
||||
"bidirectional_decoder": false, // use https://arxiv.org/abs/1907.09006. Use it, if attention does not work well with your dataset.
|
||||
"double_decoder_consistency": true, // use DDC explained here https://erogol.com/solving-attention-problems-of-tts-models-with-double-decoder-consistency-draft/
|
||||
"ddc_r": 7, // reduction rate for coarse decoder.
|
||||
|
||||
// STOPNET
|
||||
"stopnet": true, // Train stopnet predicting the end of synthesis.
|
||||
"separate_stopnet": true, // Train stopnet seperately if 'stopnet==true'. It prevents stopnet loss to influence the rest of the model. It causes a better model, but it trains SLOWER.
|
||||
|
||||
// TENSORBOARD and LOGGING
|
||||
"print_step": 25, // Number of steps to log training on console.
|
||||
"tb_plot_step": 100, // Number of steps to plot TB training figures.
|
||||
"print_eval": false, // If True, it prints intermediate loss values in evalulation.
|
||||
"save_step": 10000, // Number of training steps expected to save traninpg stats and checkpoints.
|
||||
"checkpoint": true, // If true, it saves checkpoints per "save_step"
|
||||
"keep_all_best": false, // If true, keeps all best_models after keep_after steps
|
||||
"keep_after": 10000, // Global step after which to keep best models if keep_all_best is true
|
||||
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
|
||||
|
||||
// DATA LOADING
|
||||
"text_cleaner": "phoneme_cleaners",
|
||||
"enable_eos_bos_chars": false, // enable/disable beginning of sentence and end of sentence chars.
|
||||
"num_loader_workers": 4, // number of training data loader processes. Don't set it too big. 4-8 are good values.
|
||||
"num_val_loader_workers": 4, // number of evaluation data loader processes.
|
||||
"batch_group_size": 4, //Number of batches to shuffle after bucketing.
|
||||
"min_seq_len": 6, // DATASET-RELATED: minimum text length to use in training
|
||||
"max_seq_len": 153, // DATASET-RELATED: maximum text length
|
||||
"compute_input_seq_cache": false, // if true, text sequences are computed before starting training. If phonemes are enabled, they are also computed at this stage.
|
||||
"use_noise_augment": true,
|
||||
|
||||
// PATHS
|
||||
"output_path": "/home/erogol/Models/LJSpeech/",
|
||||
|
||||
// PHONEMES
|
||||
"phoneme_cache_path": "/home/erogol/Models/phoneme_cache/", // phoneme computation is slow, therefore, it caches results in the given folder.
|
||||
"use_phonemes": true, // use phonemes instead of raw characters. It is suggested for better pronounciation.
|
||||
"phoneme_language": "en-us", // depending on your target language, pick one from https://github.com/bootphon/phonemizer#languages
|
||||
|
||||
// MULTI-SPEAKER and GST
|
||||
"use_speaker_embedding": false, // use speaker embedding to enable multi-speaker learning.
|
||||
"use_gst": false, // use global style tokens
|
||||
"use_external_speaker_embedding_file": false, // if true, forces the model to use external embedding per sample instead of nn.embeddings, that is, it supports external embeddings such as those used at: https://arxiv.org/abs /1806.04558
|
||||
"external_speaker_embedding_file": "../../speakers-vctk-en.json", // if not null and use_external_speaker_embedding_file is true, it is used to load a specific embedding file and thus uses these embeddings instead of nn.embeddings, that is, it supports external embeddings such as those used at: https://arxiv.org/abs /1806.04558
|
||||
"gst": { // gst parameter if gst is enabled
|
||||
"gst_style_input": null, // Condition the style input either on a
|
||||
// -> wave file [path to wave] or
|
||||
// -> dictionary using the style tokens {'token1': 'value', 'token2': 'value'} example {"0": 0.15, "1": 0.15, "5": -0.15}
|
||||
// with the dictionary being len(dict) <= len(gst_num_style_tokens).
|
||||
"gst_embedding_dim": 512,
|
||||
"gst_num_heads": 4,
|
||||
"gst_num_style_tokens": 10,
|
||||
"gst_use_speaker_embedding": false
|
||||
},
|
||||
|
||||
// DATASETS
|
||||
"datasets": // List of datasets. They all merged and they get different speaker_ids.
|
||||
"bidirectional_decoder": false,
|
||||
"compute_input_seq_cache": false,
|
||||
"ddc_r": 7,
|
||||
"decoder_diff_spec_alpha": 0.25,
|
||||
"decoder_loss_alpha": 0.5,
|
||||
"decoder_ssim_alpha": 0.5,
|
||||
"double_decoder_consistency": true,
|
||||
"enable_eos_bos_chars": false,
|
||||
"forward_attn_mask": false,
|
||||
"ga_alpha": 5,
|
||||
"grad_clip": 1,
|
||||
"gradual_training": [
|
||||
[
|
||||
{
|
||||
"name": "ljspeech",
|
||||
"path": "/home/erogol/Data/LJSpeech-1.1/",
|
||||
"meta_file_train": "metadata.csv", // for vtck if list, ignore speakers id in list for train, its useful for test cloning with new speakers
|
||||
"meta_file_val": null
|
||||
}
|
||||
0,
|
||||
7,
|
||||
64
|
||||
],
|
||||
[
|
||||
1,
|
||||
5,
|
||||
64
|
||||
],
|
||||
[
|
||||
50000,
|
||||
3,
|
||||
32
|
||||
],
|
||||
[
|
||||
130000,
|
||||
2,
|
||||
32
|
||||
],
|
||||
[
|
||||
290000,
|
||||
1,
|
||||
32
|
||||
]
|
||||
],
|
||||
"location_attn": true,
|
||||
"lr": 0.0001,
|
||||
"memory_size": -1,
|
||||
"noam_schedule": false,
|
||||
"phoneme_cache_path": "/home/erogol/Models/phoneme_cache/",
|
||||
"phoneme_language": "en-us",
|
||||
"postnet_diff_spec_alpha": 0.25,
|
||||
"postnet_loss_alpha": 0.25,
|
||||
"postnet_ssim_alpha": 0.25,
|
||||
"prenet_dropout": false,
|
||||
"prenet_type": "original",
|
||||
"r": 7,
|
||||
"separate_stopnet": true,
|
||||
"seq_len_norm": false,
|
||||
"stopnet": true,
|
||||
"stopnet_pos_weight": 15,
|
||||
"test_sentences_file": null,
|
||||
"text_cleaner": "phoneme_cleaners",
|
||||
"training_config": {
|
||||
"batch_group_size": 4,
|
||||
"batch_size": 32,
|
||||
"checkpoint": true,
|
||||
"datasets": [
|
||||
{
|
||||
"meta_file_train": "metadata.csv",
|
||||
"meta_file_val": null,
|
||||
"name": "ljspeech",
|
||||
"path": "/home/erogol/Data/LJSpeech-1.1/"
|
||||
}
|
||||
],
|
||||
"epochs": 1000,
|
||||
"eval_batch_size": 16,
|
||||
"keep_after": 10000,
|
||||
"keep_all_best": false,
|
||||
"loss_masking": true,
|
||||
"max_seq_len": 153,
|
||||
"min_seq_len": 6,
|
||||
"mixed_precision": true,
|
||||
"model": "Tacotron2",
|
||||
"num_loader_workers": 4,
|
||||
"num_val_loader_workers": 4,
|
||||
"output_path": "/home/erogol/Models/LJSpeech/",
|
||||
"print_eval": false,
|
||||
"print_step": 25,
|
||||
"run_description": "tacotron2 with DDC and differential spectral loss.",
|
||||
"run_eval": true,
|
||||
"run_name": "ljspeech-ddc",
|
||||
"save_step": 10000,
|
||||
"tb_model_param_stats": false,
|
||||
"tb_plot_step": 100,
|
||||
"test_delay_epochs": 10,
|
||||
"use_noise_augment": true
|
||||
},
|
||||
"transition_agent": false,
|
||||
"use_forward_attn": false,
|
||||
"use_phonemes": true,
|
||||
"warmup_steps": 4000,
|
||||
"wd": 0.000001,
|
||||
"windowing": false
|
||||
}
|
||||
|
|
|
@ -117,16 +117,11 @@ def get_last_checkpoint(path):
|
|||
return last_models["checkpoint"], last_models["best_model"]
|
||||
|
||||
|
||||
def process_args(args, model_class):
|
||||
"""Process parsed comand line arguments based on model class (tts or vocoder).
|
||||
def process_args(args, config, tb_prefix):
|
||||
"""Process parsed comand line arguments.
|
||||
|
||||
Args:
|
||||
args (argparse.Namespace or dict like): Parsed input arguments.
|
||||
model_type (str): Model type used to check config parameters and setup
|
||||
the TensorBoard logger. One of ['tts', 'vocoder'].
|
||||
|
||||
Raises:
|
||||
ValueError: If `model_type` is not one of implemented choices.
|
||||
|
||||
Returns:
|
||||
c (TTS.utils.io.AttrDict): Config paramaters.
|
||||
|
@ -138,28 +133,21 @@ def process_args(args, model_class):
|
|||
the TensorBoard loggind.
|
||||
"""
|
||||
if args.continue_path:
|
||||
# continue a previous training from its output folder
|
||||
args.output_path = args.continue_path
|
||||
args.config_path = os.path.join(args.continue_path, "config.json")
|
||||
args.restore_path, best_model = get_last_checkpoint(args.continue_path)
|
||||
if not args.best_path:
|
||||
args.best_path = best_model
|
||||
|
||||
# setup output paths and read configs
|
||||
c = load_config(args.config_path)
|
||||
_ = os.path.dirname(os.path.realpath(__file__))
|
||||
|
||||
if "mixed_precision" in c and c.mixed_precision:
|
||||
c = config.load_json(args.config_path)
|
||||
if c.mixed_precision:
|
||||
print(" > Mixed precision mode is ON")
|
||||
|
||||
out_path = args.continue_path
|
||||
if not out_path:
|
||||
out_path = create_experiment_folder(c.output_path, c.run_name, args.debug)
|
||||
|
||||
if not os.path.exists(c.output_path):
|
||||
out_path = create_experiment_folder(c.output_path, c.run_name,
|
||||
args.debug)
|
||||
audio_path = os.path.join(out_path, "test_audios")
|
||||
|
||||
c_logger = ConsoleLogger()
|
||||
tb_logger = None
|
||||
|
||||
# setup rank 0 process in distributed training
|
||||
if args.rank == 0:
|
||||
os.makedirs(audio_path, exist_ok=True)
|
||||
new_fields = {}
|
||||
|
@ -169,18 +157,15 @@ def process_args(args, model_class):
|
|||
# if model characters are not set in the config file
|
||||
# save the default set to the config file for future
|
||||
# compatibility.
|
||||
if model_class == "tts" and "characters" not in c:
|
||||
if c.has('characters_config'):
|
||||
used_characters = parse_symbols()
|
||||
new_fields["characters"] = used_characters
|
||||
copy_model_files(c, args.config_path, out_path, new_fields)
|
||||
os.chmod(audio_path, 0o775)
|
||||
os.chmod(out_path, 0o775)
|
||||
|
||||
log_path = out_path
|
||||
|
||||
tb_logger = TensorboardLogger(log_path, model_name=model_class.upper())
|
||||
|
||||
# write model config to tensorboard
|
||||
tb_logger.tb_add_text("model-config", f"<pre>{json.dumps(c, indent=4)}</pre>", 0)
|
||||
|
||||
tb_logger = TensorboardLogger(log_path, model_name=tb_prefix)
|
||||
# write model desc to tensorboard
|
||||
tb_logger.tb_add_text("model-description", c["run_description"], 0)
|
||||
c_logger = ConsoleLogger()
|
||||
return c, out_path, audio_path, c_logger, tb_logger
|
||||
|
|
|
@ -23,33 +23,32 @@ class AttrDict(dict):
|
|||
self.__dict__ = self
|
||||
|
||||
|
||||
def read_json_with_comments(json_path):
|
||||
# fallback to json
|
||||
with open(json_path, "r", encoding="utf-8") as f:
|
||||
input_str = f.read()
|
||||
# handle comments
|
||||
input_str = re.sub(r"\\\n", "", input_str)
|
||||
input_str = re.sub(r"//.*\n", "\n", input_str)
|
||||
data = json.loads(input_str)
|
||||
return data
|
||||
# def read_json_with_comments(json_path):
|
||||
# # fallback to json
|
||||
# with open(json_path, "r", encoding="utf-8") as f:
|
||||
# input_str = f.read()
|
||||
# # handle comments
|
||||
# input_str = re.sub(r'\\\n', '', input_str)
|
||||
# input_str = re.sub(r'//.*\n', '\n', input_str)
|
||||
# data = json.loads(input_str)
|
||||
# return data
|
||||
|
||||
# def load_config(config_path: str) -> AttrDict:
|
||||
# """Load config files and discard comments
|
||||
|
||||
def load_config(config_path: str) -> AttrDict:
|
||||
"""Load config files and discard comments
|
||||
# Args:
|
||||
# config_path (str): path to config file.
|
||||
# """
|
||||
# config = AttrDict()
|
||||
|
||||
Args:
|
||||
config_path (str): path to config file.
|
||||
"""
|
||||
config = AttrDict()
|
||||
|
||||
ext = os.path.splitext(config_path)[1]
|
||||
if ext in (".yml", ".yaml"):
|
||||
with open(config_path, "r", encoding="utf-8") as f:
|
||||
data = yaml.safe_load(f)
|
||||
else:
|
||||
data = read_json_with_comments(config_path)
|
||||
config.update(data)
|
||||
return config
|
||||
# ext = os.path.splitext(config_path)[1]
|
||||
# # if ext in (".yml", ".yaml"):
|
||||
# # with open(config_path, "r", encoding="utf-8") as f:
|
||||
# # data = yaml.safe_load(f)
|
||||
# # else:
|
||||
# data = read_json_with_comments(config_path)
|
||||
# config.update(data)
|
||||
# return config
|
||||
|
||||
|
||||
def copy_model_files(c, config_file, out_path, new_fields):
|
||||
|
|
Loading…
Reference in New Issue