[ci skip] config update #3 WIP

pull/476/head
Eren Gölge 2021-03-30 14:18:35 +02:00
parent a21c0b5585
commit 97bd5f9734
4 changed files with 158 additions and 220 deletions

View File

@ -14,6 +14,7 @@ from torch.utils.data import DataLoader
from TTS.tts.datasets.preprocess import load_meta_data
from TTS.tts.datasets.TTSDataset import MyDataset
from TTS.tts.layers.losses import TacotronLoss
from TTS.tts.configs.tacotron_config import TacotronConfig
from TTS.tts.utils.generic_utils import setup_model
from TTS.tts.utils.io import save_best_model, save_checkpoint
from TTS.tts.utils.measures import alignment_diagonal_score

View File

@ -1,173 +1,126 @@
{
"model": "Tacotron2",
"run_name": "ljspeech-ddc",
"run_description": "tacotron2 with DDC and differential spectral loss.",
// AUDIO PARAMETERS
"audio":{
// stft parameters
"fft_size": 1024, // number of stft frequency levels. Size of the linear spectogram frame.
"win_length": 1024, // stft window length in ms.
"hop_length": 256, // stft window hop-lengh in ms.
"frame_length_ms": null, // stft window length in ms.If null, 'win_length' is used.
"frame_shift_ms": null, // stft window hop-lengh in ms. If null, 'hop_length' is used.
// Audio processing parameters
"sample_rate": 22050, // DATASET-RELATED: wav sample-rate.
"preemphasis": 0.0, // pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis.
"ref_level_db": 20, // reference level db, theoretically 20db is the sound of air.
// Silence trimming
"do_trim_silence": true,// enable trimming of slience of audio as you load it. LJspeech (true), TWEB (false), Nancy (true)
"trim_db": 60, // threshold for timming silence. Set this according to your dataset.
// Griffin-Lim
"power": 1.5, // value to sharpen wav signals after GL algorithm.
"griffin_lim_iters": 60,// #griffin-lim iterations. 30-60 is a good range. Larger the value, slower the generation.
// MelSpectrogram parameters
"num_mels": 80, // size of the mel spec frame.
"mel_fmin": 50.0, // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!!
"mel_fmax": 7600.0, // maximum freq level for mel-spec. Tune for dataset!!
"attention_heads": 4,
"attention_norm": "sigmoid",
"attention_type": "original",
"audio_config": {
"clip_norm": true,
"do_trim_silence": true,
"fft_size": 1024,
"frame_length_ms": null,
"frame_shift_ms": null,
"griffin_lim_iters": 60,
"hop_length": 256,
"max_norm": 4,
"mel_fmax": 7600,
"mel_fmin": 50,
"min_level_db": -100,
"num_mels": 80,
"power": 1.5,
"preemphasis": 0,
"ref_level_db": 20,
"sample_rate": 22050,
"signal_norm": true,
"spec_gain": 1,
// Normalization parameters
"signal_norm": true, // normalize spec values. Mean-Var normalization if 'stats_path' is defined otherwise range normalization defined by the other params.
"min_level_db": -100, // lower bound for normalization
"symmetric_norm": true, // move normalization to range [-1, 1]
"max_norm": 4.0, // scale normalization to range [-max_norm, max_norm] or [0, max_norm]
"clip_norm": true, // clip normalized values into the range.
"stats_path": "/home/erogol/Data/LJSpeech-1.1/scale_stats.npy" // DO NOT USE WITH MULTI_SPEAKER MODEL. scaler stats file computed by 'compute_statistics.py'. If it is defined, mean-std based notmalization is used and other normalization params are ignored
"stats_path": "/home/erogol/Data/LJSpeech-1.1/scale_stats.npy",
"symmetric_norm": true,
"trim_db": 60,
"win_length": 1024
},
// VOCABULARY PARAMETERS
// if custom character set is not defined,
// default set in symbols.py is used
// "characters":{
// "pad": "_",
// "eos": "~",
// "bos": "^",
// "characters": "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz!'(),-.:;? ",
// "punctuations":"!'(),-.:;? ",
// "phonemes":"iyɨʉɯuɪʏʊeøɘəɵɤoɛœɜɞʌɔæɐaɶɑɒᵻʘɓǀɗǃʄǂɠǁʛpbtdʈɖcɟkɡʔɴŋɲɳnɱmʙrʀⱱɾɽɸβfvθðszʃʒʂʐçʝxɣχʁħʕhɦɬɮʋɹɻjɰlɭʎʟˈˌːˑʍwɥʜʢʡɕʑɺɧɚ˞ɫ"
// },
// DISTRIBUTED TRAINING
"distributed":{
"backend": "nccl",
"url": "tcp:\/\/localhost:54321"
},
"reinit_layers": [], // give a list of layer names to restore from the given checkpoint. If not defined, it reloads all heuristically matching layers.
// TRAINING
"batch_size": 32, // Batch size for training. Lower values than 32 might cause hard to learn attention. It is overwritten by 'gradual_training'.
"eval_batch_size":16,
"r": 7, // Number of decoder frames to predict per iteration. Set the initial values if gradual training is enabled.
"gradual_training": [[0, 7, 64], [1, 5, 64], [50000, 3, 32], [130000, 2, 32], [290000, 1, 32]], //set gradual training steps [first_step, r, batch_size]. If it is null, gradual training is disabled. For Tacotron, you might need to reduce the 'batch_size' as you proceeed.
"mixed_precision": true, // level of optimization with NVIDIA's apex feature for automatic mixed FP16/FP32 precision (AMP), NOTE: currently only O1 is supported, and use "O1" to activate.
// LOSS SETTINGS
"loss_masking": true, // enable / disable loss masking against the sequence padding.
"decoder_loss_alpha": 0.5, // original decoder loss weight. If > 0, it is enabled
"postnet_loss_alpha": 0.25, // original postnet loss weight. If > 0, it is enabled
"postnet_diff_spec_alpha": 0.25, // differential spectral loss weight. If > 0, it is enabled
"decoder_diff_spec_alpha": 0.25, // differential spectral loss weight. If > 0, it is enabled
"decoder_ssim_alpha": 0.5, // decoder ssim loss weight. If > 0, it is enabled
"postnet_ssim_alpha": 0.25, // postnet ssim loss weight. If > 0, it is enabled
"ga_alpha": 5.0, // weight for guided attention loss. If > 0, guided attention is enabled.
"stopnet_pos_weight": 15.0, // pos class weight for stopnet loss since there are way more negative samples than positive samples.
// VALIDATION
"run_eval": true,
"test_delay_epochs": 10, //Until attention is aligned, testing only wastes computation time.
"test_sentences_file": null, // set a file to load sentences to be used for testing. If it is null then we use default english sentences.
// OPTIMIZER
"noam_schedule": false, // use noam warmup and lr schedule.
"grad_clip": 1.0, // upper limit for gradients for clipping.
"epochs": 1000, // total number of epochs to train.
"lr": 0.0001, // Initial learning rate. If Noam decay is active, maximum learning rate.
"wd": 0.000001, // Weight decay weight.
"warmup_steps": 4000, // Noam decay steps to increase the learning rate from 0 to "lr"
"seq_len_norm": false, // Normalize eash sample loss with its length to alleviate imbalanced datasets. Use it if your dataset is small or has skewed distribution of sequence lengths.
// TACOTRON PRENET
"memory_size": -1, // ONLY TACOTRON - size of the memory queue used fro storing last decoder predictions for auto-regression. If < 0, memory queue is disabled and decoder only uses the last prediction frame.
"prenet_type": "original", // "original" or "bn".
"prenet_dropout": true, // enable/disable dropout at prenet.
// TACOTRON ATTENTION
"attention_type": "original", // 'original' , 'graves', 'dynamic_convolution'
"attention_heads": 4, // number of attention heads (only for 'graves')
"attention_norm": "sigmoid", // softmax or sigmoid.
"windowing": false, // Enables attention windowing. Used only in eval mode.
"use_forward_attn": false, // if it uses forward attention. In general, it aligns faster.
"forward_attn_mask": false, // Additional masking forcing monotonicity only in eval mode.
"transition_agent": false, // enable/disable transition agent of forward attention.
"location_attn": true, // enable_disable location sensitive attention. It is enabled for TACOTRON by default.
"bidirectional_decoder": false, // use https://arxiv.org/abs/1907.09006. Use it, if attention does not work well with your dataset.
"double_decoder_consistency": true, // use DDC explained here https://erogol.com/solving-attention-problems-of-tts-models-with-double-decoder-consistency-draft/
"ddc_r": 7, // reduction rate for coarse decoder.
// STOPNET
"stopnet": true, // Train stopnet predicting the end of synthesis.
"separate_stopnet": true, // Train stopnet seperately if 'stopnet==true'. It prevents stopnet loss to influence the rest of the model. It causes a better model, but it trains SLOWER.
// TENSORBOARD and LOGGING
"print_step": 25, // Number of steps to log training on console.
"tb_plot_step": 100, // Number of steps to plot TB training figures.
"print_eval": false, // If True, it prints intermediate loss values in evalulation.
"save_step": 10000, // Number of training steps expected to save traninpg stats and checkpoints.
"checkpoint": true, // If true, it saves checkpoints per "save_step"
"keep_all_best": false, // If true, keeps all best_models after keep_after steps
"keep_after": 10000, // Global step after which to keep best models if keep_all_best is true
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
// DATA LOADING
"text_cleaner": "phoneme_cleaners",
"enable_eos_bos_chars": false, // enable/disable beginning of sentence and end of sentence chars.
"num_loader_workers": 4, // number of training data loader processes. Don't set it too big. 4-8 are good values.
"num_val_loader_workers": 4, // number of evaluation data loader processes.
"batch_group_size": 4, //Number of batches to shuffle after bucketing.
"min_seq_len": 6, // DATASET-RELATED: minimum text length to use in training
"max_seq_len": 153, // DATASET-RELATED: maximum text length
"compute_input_seq_cache": false, // if true, text sequences are computed before starting training. If phonemes are enabled, they are also computed at this stage.
"use_noise_augment": true,
// PATHS
"output_path": "/home/erogol/Models/LJSpeech/",
// PHONEMES
"phoneme_cache_path": "/home/erogol/Models/phoneme_cache/", // phoneme computation is slow, therefore, it caches results in the given folder.
"use_phonemes": true, // use phonemes instead of raw characters. It is suggested for better pronounciation.
"phoneme_language": "en-us", // depending on your target language, pick one from https://github.com/bootphon/phonemizer#languages
// MULTI-SPEAKER and GST
"use_speaker_embedding": false, // use speaker embedding to enable multi-speaker learning.
"use_gst": false, // use global style tokens
"use_external_speaker_embedding_file": false, // if true, forces the model to use external embedding per sample instead of nn.embeddings, that is, it supports external embeddings such as those used at: https://arxiv.org/abs /1806.04558
"external_speaker_embedding_file": "../../speakers-vctk-en.json", // if not null and use_external_speaker_embedding_file is true, it is used to load a specific embedding file and thus uses these embeddings instead of nn.embeddings, that is, it supports external embeddings such as those used at: https://arxiv.org/abs /1806.04558
"gst": { // gst parameter if gst is enabled
"gst_style_input": null, // Condition the style input either on a
// -> wave file [path to wave] or
// -> dictionary using the style tokens {'token1': 'value', 'token2': 'value'} example {"0": 0.15, "1": 0.15, "5": -0.15}
// with the dictionary being len(dict) <= len(gst_num_style_tokens).
"gst_embedding_dim": 512,
"gst_num_heads": 4,
"gst_num_style_tokens": 10,
"gst_use_speaker_embedding": false
},
// DATASETS
"datasets": // List of datasets. They all merged and they get different speaker_ids.
"bidirectional_decoder": false,
"compute_input_seq_cache": false,
"ddc_r": 7,
"decoder_diff_spec_alpha": 0.25,
"decoder_loss_alpha": 0.5,
"decoder_ssim_alpha": 0.5,
"double_decoder_consistency": true,
"enable_eos_bos_chars": false,
"forward_attn_mask": false,
"ga_alpha": 5,
"grad_clip": 1,
"gradual_training": [
[
{
"name": "ljspeech",
"path": "/home/erogol/Data/LJSpeech-1.1/",
"meta_file_train": "metadata.csv", // for vtck if list, ignore speakers id in list for train, its useful for test cloning with new speakers
"meta_file_val": null
}
0,
7,
64
],
[
1,
5,
64
],
[
50000,
3,
32
],
[
130000,
2,
32
],
[
290000,
1,
32
]
],
"location_attn": true,
"lr": 0.0001,
"memory_size": -1,
"noam_schedule": false,
"phoneme_cache_path": "/home/erogol/Models/phoneme_cache/",
"phoneme_language": "en-us",
"postnet_diff_spec_alpha": 0.25,
"postnet_loss_alpha": 0.25,
"postnet_ssim_alpha": 0.25,
"prenet_dropout": false,
"prenet_type": "original",
"r": 7,
"separate_stopnet": true,
"seq_len_norm": false,
"stopnet": true,
"stopnet_pos_weight": 15,
"test_sentences_file": null,
"text_cleaner": "phoneme_cleaners",
"training_config": {
"batch_group_size": 4,
"batch_size": 32,
"checkpoint": true,
"datasets": [
{
"meta_file_train": "metadata.csv",
"meta_file_val": null,
"name": "ljspeech",
"path": "/home/erogol/Data/LJSpeech-1.1/"
}
],
"epochs": 1000,
"eval_batch_size": 16,
"keep_after": 10000,
"keep_all_best": false,
"loss_masking": true,
"max_seq_len": 153,
"min_seq_len": 6,
"mixed_precision": true,
"model": "Tacotron2",
"num_loader_workers": 4,
"num_val_loader_workers": 4,
"output_path": "/home/erogol/Models/LJSpeech/",
"print_eval": false,
"print_step": 25,
"run_description": "tacotron2 with DDC and differential spectral loss.",
"run_eval": true,
"run_name": "ljspeech-ddc",
"save_step": 10000,
"tb_model_param_stats": false,
"tb_plot_step": 100,
"test_delay_epochs": 10,
"use_noise_augment": true
},
"transition_agent": false,
"use_forward_attn": false,
"use_phonemes": true,
"warmup_steps": 4000,
"wd": 0.000001,
"windowing": false
}

View File

@ -117,16 +117,11 @@ def get_last_checkpoint(path):
return last_models["checkpoint"], last_models["best_model"]
def process_args(args, model_class):
"""Process parsed comand line arguments based on model class (tts or vocoder).
def process_args(args, config, tb_prefix):
"""Process parsed comand line arguments.
Args:
args (argparse.Namespace or dict like): Parsed input arguments.
model_type (str): Model type used to check config parameters and setup
the TensorBoard logger. One of ['tts', 'vocoder'].
Raises:
ValueError: If `model_type` is not one of implemented choices.
Returns:
c (TTS.utils.io.AttrDict): Config paramaters.
@ -138,28 +133,21 @@ def process_args(args, model_class):
the TensorBoard loggind.
"""
if args.continue_path:
# continue a previous training from its output folder
args.output_path = args.continue_path
args.config_path = os.path.join(args.continue_path, "config.json")
args.restore_path, best_model = get_last_checkpoint(args.continue_path)
if not args.best_path:
args.best_path = best_model
# setup output paths and read configs
c = load_config(args.config_path)
_ = os.path.dirname(os.path.realpath(__file__))
if "mixed_precision" in c and c.mixed_precision:
c = config.load_json(args.config_path)
if c.mixed_precision:
print(" > Mixed precision mode is ON")
out_path = args.continue_path
if not out_path:
out_path = create_experiment_folder(c.output_path, c.run_name, args.debug)
if not os.path.exists(c.output_path):
out_path = create_experiment_folder(c.output_path, c.run_name,
args.debug)
audio_path = os.path.join(out_path, "test_audios")
c_logger = ConsoleLogger()
tb_logger = None
# setup rank 0 process in distributed training
if args.rank == 0:
os.makedirs(audio_path, exist_ok=True)
new_fields = {}
@ -169,18 +157,15 @@ def process_args(args, model_class):
# if model characters are not set in the config file
# save the default set to the config file for future
# compatibility.
if model_class == "tts" and "characters" not in c:
if c.has('characters_config'):
used_characters = parse_symbols()
new_fields["characters"] = used_characters
copy_model_files(c, args.config_path, out_path, new_fields)
os.chmod(audio_path, 0o775)
os.chmod(out_path, 0o775)
log_path = out_path
tb_logger = TensorboardLogger(log_path, model_name=model_class.upper())
# write model config to tensorboard
tb_logger.tb_add_text("model-config", f"<pre>{json.dumps(c, indent=4)}</pre>", 0)
tb_logger = TensorboardLogger(log_path, model_name=tb_prefix)
# write model desc to tensorboard
tb_logger.tb_add_text("model-description", c["run_description"], 0)
c_logger = ConsoleLogger()
return c, out_path, audio_path, c_logger, tb_logger

View File

@ -23,33 +23,32 @@ class AttrDict(dict):
self.__dict__ = self
def read_json_with_comments(json_path):
# fallback to json
with open(json_path, "r", encoding="utf-8") as f:
input_str = f.read()
# handle comments
input_str = re.sub(r"\\\n", "", input_str)
input_str = re.sub(r"//.*\n", "\n", input_str)
data = json.loads(input_str)
return data
# def read_json_with_comments(json_path):
# # fallback to json
# with open(json_path, "r", encoding="utf-8") as f:
# input_str = f.read()
# # handle comments
# input_str = re.sub(r'\\\n', '', input_str)
# input_str = re.sub(r'//.*\n', '\n', input_str)
# data = json.loads(input_str)
# return data
# def load_config(config_path: str) -> AttrDict:
# """Load config files and discard comments
def load_config(config_path: str) -> AttrDict:
"""Load config files and discard comments
# Args:
# config_path (str): path to config file.
# """
# config = AttrDict()
Args:
config_path (str): path to config file.
"""
config = AttrDict()
ext = os.path.splitext(config_path)[1]
if ext in (".yml", ".yaml"):
with open(config_path, "r", encoding="utf-8") as f:
data = yaml.safe_load(f)
else:
data = read_json_with_comments(config_path)
config.update(data)
return config
# ext = os.path.splitext(config_path)[1]
# # if ext in (".yml", ".yaml"):
# # with open(config_path, "r", encoding="utf-8") as f:
# # data = yaml.safe_load(f)
# # else:
# data = read_json_with_comments(config_path)
# config.update(data)
# return config
def copy_model_files(c, config_file, out_path, new_fields):